
© 2010 Netezza, Inc. All rights reserved Publicly availableAugust 4, 2010 Page 1

Massively parallel analytics for large
datasets in R with nza package
Cezary Dendek, Przemysław Biecek, Paweł Chudzian, Justin Lindsey

useR! 2010
July 21, 2010

Main assumptions

•  Data stored in Netezza Performance Server database
>  Provides data parallelism in cluster environment
>  Provides what R lacks: performance & out-of-memory storage

•  Processing should be close to the (large) data
>  Limit a data transfer between the cluster nodes

•  Symmetrical processing
>  Single Instruction Multiple Data
>  Lack of deadlocks due to smart representation

Page 2

Tradeoff between Flexibility and Performance

•  R language (high flexibility, low performance)

•  In-database processing

•  C++ language (low flexibility, high performance)

Page 3

Approaches to data processing in nza

•  Direct data processing in R
>  Execution of R functions passed to data operators
>  Abstraction over SQL
>  Parallel execution over the data chunks
>  High flexibility, medium performance

•  Construction of statistical models using in-database processing
>  Efficient, parallel algorithms for model construction
>  High performance, medium flexibility

•  High performance&flexibility
>  Fast in-database calculation of data aggregates
>  Flexibility of aggregate manipulation in R

Page 4

Direct parallel data processing in R
•  R code is executed in database, close to data and in parallel.

•  Data operator is responsible for
>  Propagation of given task and data stream to R
>  Selecting optimal model of execution
>  Propagation of the results to DB

•  Data operators

Page 5

nzApply nzTApply nzGroupedApply

Data abstraction row group row in group

State machine? SL SL SF, merged

Type of transformation 1 row -> 1 row 1 group -> 1 row (1+) row -> 1 row
reduction

Direct parallel data processing in R

library(nza)

nzConnectDSN("NSQL")

nzadults <- nz.data.frame("database..table")

FUN1 <- function(x) {sqrt(x[[1]])}

FUN2 <- function(x) {mean(x)}

nzApply(nzadults[,1:2], FUN1, output.table="ttable1")

nzTApply(nzadults[,1:3], nzadults[,4], FUN2, output.table="ttable2")

Page 6

In-database processing
•  Efficient, specialized parallel algorithms (SQL+native processing)

>  Decision trees (classification and regression)
>  K – means
>  Naive Bayes
>  One- and two-way ANOVA
>  Simple statistics and support for hypothesis testing

•  Output compatible with native R objects

•  Model creation and application

Page 7

Page 8

In-database processing
 Decision trees [regression]

In-database processing
 Decision trees [regression]

Page 9

In-database processing
 K – means

Page 10

Page 11

In-database processing
 Naive Bayes

Page 12

In-database processing
 ANOVA

Page 13

In-database processing
 Example R session

Data aggregates (high performance & flexibility)

Page 14

Dot product (XTX) matrix

•  Sufficient statistics for linear models

•  In-database calculation of model matrix with
>  support for categorical variables (dummy variables)
>  support for continuous variables (centering, scaling)
>  support for bootstrap samples and weighted case

•  Model size depends only on the number of columns
(and levels)

Page 15

Dot product (XTX) matrix

•  nza functions using the dot product matrix:
>  nzLm(formula, nzdf)
>  nzRidge(formula, nzdf, lambda=10)
>  nzPCA(formula, nzdf)
>  nzANOVA(formula, nzdf)
>  nzPCR(formula, nzdf)
>  nzCanonical(formula, nzdf)

•  R package nzMatrix can operate on matrices as large as
e.g. 100k x 100k (limited by total RAM of the NPS)

Page 16

Multivariate Contingency Table

•  2 or more categorical variables
(a multimatrix, a hypercube)

•  The “dot product” matrix for categorical data

•  Analysis of the relations and correspondence between
given variables (correlation, CA, MCA)

Page 17

Multivariate Contingency Table

•  Aggregate creation:
>  Actual

model = nzTable (form, nzdf, makeMatrix=T)
>  Read from DB

model = getContTab(form, nzdf, makeMatrix=F)

•  Example
>  getContTab(~EDUCATION+OCCUPATION, nzadult, T)

Page 18

Multivariate Contingency Table

•  nza functions that make use of contingency table:
>  nzca(form, nzdf, ...)
>  nzchisq.test(form, nzdf, ...)
>  nzMantelHenszel.test(form, nzdf, ...)
>  nzGoodman(form, nzdf, …)

• Compute once and reuse

Page 19

Summary: nza

•  Provides various tools and strategies for parallel,
out-of-memory data processing
>  Direct use of R code with specialized data operators
>  R wrappers for specialized in-DB functions for model creation
>  In-DB intensive calculation of data aggregates

(sufficient statistics) and
R functions for model creation (from suff. statistics)

•  Uses Netezza Performance Server as a backend

Page 20

Thank you

Questions?

cdendek@netezza.com

pbiecek@netezza.com

Page 21

