

Massively parallel analytics for large datasets in R with *nza* package

Cezary Dendek, Przemysław Biecek, Paweł Chudzian, Justin Lindsey

useR! 2010 July 21, 2010

Main assumptions

- Data stored in Netezza Performance Server database
 - > Provides data parallelism in cluster environment
 - > Provides what R lacks: performance & out-of-memory storage
- Processing should be close to the (large) data
 - > Limit a data transfer between the cluster nodes

Symmetrical processing

- > Single Instruction Multiple Data
- > Lack of deadlocks due to smart representation

Tradeoff between Flexibility and Performance

- R language (high flexibility, low performance)
- In-database processing
- C++ language (low flexibility, high performance)

Approaches to data processing in nza

Direct data processing in R

- > Execution of R functions passed to data operators
- > Abstraction over SQL
- > Parallel execution over the data chunks
- > High flexibility, medium performance

Construction of statistical models using in-database processing

- > Efficient, parallel algorithms for model construction
- > High performance, medium flexibility

High performance&flexibility

- > Fast in-database calculation of data aggregates
- > Flexibility of aggregate manipulation in R

Direct parallel data processing in R

- R code is executed in database, close to data and in parallel.
- <u>Data operator</u> is responsible for
 - > Propagation of given task and data stream to R
 - > Selecting optimal model of execution
 - > Propagation of the results to DB
- Data operators

	nzApply	nzTApply	nzGroupedApply
Data abstraction	row	group	row in group
State machine?	SL	SL	SF, merged
Type of transformation	1 row -> 1 row	1 group -> 1 row	(1+) row -> 1 row reduction

Direct parallel data processing in R

```
library(nza)
nzConnectDSN("NSQL")
nzadults <- nz.data.frame("database..table")</pre>
```

FUN1 <- function(x) {sqrt(x[[1]])}
FUN2 <- function(x) {mean(x)}</pre>

nzApply(nzadults[,1:2], FUN1, output.table="ttable1")
nzTApply(nzadults[,1:3], nzadults[,4], FUN2, output.table="ttable2")

In-database processing

- Efficient, specialized parallel algorithms (SQL+native processing)
 - Decision trees (classification and regression)
 - > K means
 - > Naive Bayes
 - > One- and two-way ANOVA
 - > Simple statistics and support for hypothesis testing
- Output compatible with native R objects
- Model creation and application

In-database processing Decision trees [regression]

- Tree building
 - > tree.model = nzDecTree (form, data, outtable = uniqueTableName(), minsplit = 1000, maxdepth = 62, id = "id", qmeasure = "wAcc")
- Prediction

> predict.nzDecTree (tree.model, newdata, id = "id")

- Generic
 - > print (tree.model), plot (tree.model)

In-database processing Decision trees [regression]

- Tree building
 - > tree.model = nzRegTree (form, data, outtable = uniqueTableName(), minimprove = 0.1, maxdepth = 62, minsplit = 2, id = "id")
- Prediction
 - > predict.nzRegTree (tree.model, newdata, id = "id")
- Generic
 - > print (tree.model), plot (tree.model)

In-database processing K – means

- Model building
 - > model = nzKMeans (data, k = 2, maxiter = 10, distance = "euclidean", outtable = uniqueTableName(), id = "id", getLabels = F, randseed = 1234)
- Prediction

> predict.nzKMeans (model, newdata, id = "id")

- Generic
 - > print (model)

In-database processing Naive Bayes

- Model building
 - > model = nzNaiveBayes (form, data, outtable = uniqueTableName(), id = "id")
- Prediction
 - > predict.nzNaiveBayes (model, newdata, id = "id")
- Generic
 - > print (model)

In-database processing ANOVA

- Testing hypothesis about means
 - > model.av = nzAnova (form, data, outtable = uniqueTableName())
- Generic
 - > print (model.av)

In-database processing Example R session

<pre>istory Resize Windows istory Resize Windows istory Resize Windows istory (nza) zconnect("admin", "password", "TT4-R040", "nza") zadult = nz.data.frame("adult") dultTree = nzDecTree(income~., data=nzadult, maxdepth=4) lot(adultTree) dultTree), split, n, deviance, yval, (yprob) * denotes terminal node oot 32561 0 small (0.24081 0.75919) marital_status=Married-civ-spouse 14976 0 small (0.44685 0.55315) 4) education_num < 12 10507 0 small (0.33102 0.66898) 8) capital gain < 5013 9979 0 small (0.29672 0.70328) *</pre>	education_num < 12	s=Married-civ-spouse capital_gain < 6849
<pre>console ibrary(nza) zconnect("admin", "password", "TT4-R040", "nza") zadult = nz.data.frame("adult") dultTree = nzDecTree(income~., data=nzadult, maxdepth=4) lot(adultTree) dultTree), split, n, deviance, yval, (yprob) * denotes terminal node cot 32561 0 small (0.24081 0.75919) marital_status=Married-civ-spouse 14976 0 small (0.44685 0.55315) 4) education_num < 12 10507 0 small (0.33102 0.66898)</pre>	education_num < 12	s=Married-civ-spouse
<pre>ibrary(nza) zconnect("admin", "password", "TT4-R040", "nza") zadult = nz.data.frame("adult") dultTree = nzDecTree(income~., data=nzadult, maxdepth=4) lot(adultTree) dultTree), split, n, deviance, yval, (yprob) * denotes terminal node cot 32561 0 small (0.24081 0.75919) marital_status=Married-civ-spouse 14976 0 small (0.44685 0.55315) 4) education_num < 12 10507 0 small (0.33102 0.66898)</pre>	education_num < 12	s=Married-civ-spouse
<pre>zconnect("admin", "password", "TT4-R040", "nza") zadult = nz.data.frame("adult") dultTree = nzDecTree(income~., data=nzadult, maxdepth=4) lot(adultTree) dultTree), split, n, deviance, yval, (yprob) * denotes terminal node oot 32561 0 small (0.24081 0.75919) marital_status=Married-civ-spouse 14976 0 small (0.44685 0.55315) 4) education_num < 12 10507 0 small (0.33102 0.66898)</pre>	education_num < 12	
<pre>9) capital_gain > 5013 528 0 large (0.97917 0.02083) * 5) education_num > 12 4469 0 large (0.71918 0.28082) * marital_status < >Married-civ-spouse 17585 0 small (0.06534 0.93466) 6) capital_gain < 6849 17274 0 small (0.04915 0.95085) * 7) capital_gain > 6849 311 0 large (0.96463 0.03537) * ead(predict(adultTree, nzadult)) D CLASS 2 large 4 large 8 large 2 large 4 large 6 large</pre>	small large	ge sm ⁱ all large
etContTable(~EDUCATION+OCCUPATION, nzadult, T)\$mat Adm-clerical Armed-Forces Craft-repair Exec-managerial Farming-f	shing Handlers-cleaners	
38 0 170 24	44 71	
67 0 175 34	37 123	
38 1 58 13	16 38	
8th 0 0 23 4	18 16	
c-acdm 6 0 43 1	36 40	
ers 11 0 116 19	70 46	
14 0 96 13	28 49	
4th 193 0 115 145	14 24	

Data aggregates (high performance & flexibility)

- Decomposition of model creation into:
 - > In-database calculation of Sufficient Statistics for model construction
 - > Dot product matrix (X^TX)
 - > Multivariate contingency table
 - > Model fitting directly in R environment

Data aggregates

- > Computed "close" to the data in (embarassingly) parallel way
- > Information extraction (reduction of the data being transfered)
- > Does not reduce flexibility of model creation
- > Computed and transmitted once, used multiple times

Dot product (X^TX) matrix

- Sufficient statistics for linear models
- In-database calculation of model matrix with
 - > support for categorical variables (dummy variables)
 - > support for continuous variables (centering, scaling)
 - > support for bootstrap samples and weighted case
- Model size depends only on the number of columns (and levels)

Dot product (X^TX) matrix

- nza functions using the dot product matrix:
 - > nzLm(formula, nzdf)
 - > nzRidge(formula, nzdf, lambda=10)
 - > nzPCA(formula, nzdf)
 - > nzANOVA(formula, nzdf)
 - > nzPCR(formula, nzdf)
 - > nzCanonical(formula, nzdf)
- R package nzMatrix can operate on matrices as large as e.g. 100k x 100k (limited by total RAM of the NPS)

Multivariate Contingency Table

• 2 or more categorical variables (a multimatrix, a hypercube)

- The "dot product" matrix for categorical data
- Analysis of the relations and correspondence between given variables (correlation, CA, MCA)

Multivariate Contingency Table

- Aggregate creation:
 - > Actual

model = nzTable (form, nzdf, makeMatrix=T)

- > Read from DB
 model = getContTab(form, nzdf, makeMatrix=F)
- Example
 - > getContTab(~EDUCATION+OCCUPATION, nzadult, T)

Multivariate Contingency Table

- nza functions that make use of contingency table:
 - > nzca(form, nzdf, ...)
 - > nzchisq.test(form, nzdf, ...)
 - > nzMantelHenszel.test(form, nzdf, ...)
 - > nzGoodman(form, nzdf, ...)
- Compute once and reuse

Summary: nza

- Provides various tools and strategies for parallel, out-of-memory data processing
 - > Direct use of R code with specialized data operators
 - > R wrappers for specialized in-DB functions for model creation
 - In-DB intensive calculation of data aggregates (sufficient statistics) and R functions for model creation (from suff. statistics)
- Uses Netezza Performance Server as a backend

Thank you

Questions?

cdendek@netezza.com

pbiecek@netezza.com

