
CXXR and Add-on Packages
Andrew Runnalls1

1. School of Computing, University of Kent, UK, A.R.Runnalls@kent.ac.uk

Keywords: R, CXXR, C++, packages, CRAN

CXXR (www.cs.kent.ac.uk/projects/cxxr) is a project to refactor (reengineer) the interpreter of the R
language, currently written for the most part in C, into C++. It is hoped that by reorganising the code along
object-oriented lines, by deploying the tighter code encapsulation that is possible in C++, and by improving
the internal documentation, the project will make it easier for researchers to develop experimental versions
of the R interpreter.

The design of CXXR endeavours to reconcile three objectives:

• Above all, to be functionally consistent with standard R, both at the R language level, and at the
C/Fortran package interface level.

• For the core of the interpreter to be written in idiomatic, standards-conforming C++, making best
use of the C++ standard library, and providing a well documented C++ API on which C++ package
writers can build.

• To provide a reasonably simple mechanism for CXXR to be upgraded to parallel the continuing evo-
lution of standard R.

Development of CXXR started in May 2007, then shadowing R 2.5.1; at the time of this abstract it
reflects the functionality of R 2.10.1. At useR! 2009 Chris Silles described an offshoot project to introduce
provenance-tracking facilities into CXXR, so that for any R data object it will be possible to determine
exactly which original data files it was derived from, and exactly which sequence of operations was used to
produce it: in other words, an enhanced version of the old S AUDIT facility.

In principle any R add-on package should work without alteration under CXXR, provided it conforms
to the R.h or S.h APIs. (Code using Rinternals.h may need alterations, usually minor, as explained
in the CXXR documentation.) The primary purpose of this paper—after giving a general update on the
CXXR project—is to gauge to what extent this is true in practice, by describing the author’s experiences in
installing and testing under CXXR a number of the most widely used packages from CRAN. A particular
observation will be how CXXR can quickly bring to light memory-protection errors (i.e. incorrect use of
PROTECT(), UNPROTECT() etc.) that may long lie dormant under the standard R interpreter.

The paper will go on to explain how CXXR offers the prospect of making life simpler for package writers
incorporating native C/C++ code, and allowing—in a controlled way—closer interaction between package
code and the underlying interpreter. For example, the following are already feasible:

• Direct access to the underlying garbage collection system via a well-documented and well-encapsulated
API.

• In CXXR the SEXPREC union is replaced by a C++ class hierarchy. Package writers can extend this
class hierarchy as they see fit, rather than needing to use external pointers and finalizers. In particular,
new R classes can be wrapped around new C++ classes within the hierarchy.

• Instead of using PROTECT() and kindred functions, package writers can use C++ smart pointers which
afford memory protection to whatever they point to. This is much simpler and less error-prone than
the PROTECT() mechanism.

These points will be illustrated by showing how the ff package can be reengineered under CXXR. (Admittedly,
these facilities come at the expense of compatibility with the standard R interpreter.)

References

Chris Silles and Andrew Runnalls (2009). Provenance Tracking in CXXR,
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Silles+Runnalls.pdf.

Daniel Adler et al. (2007). ff: memory-efficient storage of large data on disk and fast access functions,
http://cran.r-project.org/web/packages/ff/index.html.

mailto:A.R.Runnalls@kent.ac.uk
http:www.cs.kent.ac.uk/projects/cxxr
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Silles+Runnalls.pdf
http://cran.r-project.org/web/packages/ff/index.html

