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Rdsm provides a threads-like programming environment for R, usable both within a multicore machine
and across a network of multiple machines. The package gives the illusion of shared memory, again even
across multiple machines on a network.

Consider for instance the assignment y <- x. In a message-passing setting such as Rmpi, x and y may
reside in processes 2 and 5, say. The programmer would write code

send x to process 5
to run on process 2, and write code

receive data item from process 2
set y to received item

to run on process 5. By contrast, in a shared-memory environment, the programmer would merely write
set y to x

vastly simpler.
Accordingly, many in the general parallel processing community find that the shared-memory approach

makes code easier and faster to develop, and easier to maintain and extend. See for example Chandra (2001),
Hess et al (2003) etc.

Rdsm should have a wide variety of applications, such as

• Performance programming, in “embarrassingly parallel” settings.

• Parallel I/O applications, e.g. parallel Web data collection.

• Collaborative tools.

Again, these applications can be done via message-passing too, but we argue that the shared-memory
paradigm makes these applications easier to develop, maintain and extend.

We will also compare Rdsm to other parallel R packages, in terms of paradigm, flexibility and convenience.
Finally, two general points about parallel R and parallel programming in general will be presented. First,

it will be argued that for non-embarrassingly parallel situations, the nature of R presents a fundamental
obstacle to performance, so that one is essentially forced to have R call parallel C code, say with direct
threads or via OpenMP. Second, a simple mathematical argument will be presented regarding parallelization
of for loops, showing that in most cases it is not profitable to micromanage allocations of iterations to
processes.
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