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Introduction to Generalized Nonlinear Models in R

Preface

Generalized linear models (logit/probit regression, log-linear
models, etc.) are now part of the standard empirical toolkit.

Sometimes the assumption of a linear predictor is unduly
restrictive.

This short course shows how generalized nonlinear models may be
viewed as a unified class, and how to work with such models using
the R package gnm.

The course will give an overview of the functionality of the gnm
package; further details and examples can be found in the vignette
distributed with the package:

http://www.cran.r-project.org/package=gnm
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Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

Linear models:
e.g.,

E(yi) = β0 + β1xi + β2zi

E(yi) = β0 + β1xi + β2x
2
i

E(yi) = β0 + γ1δ1xi + exp(θ2)zi

In general:

E(yi) = ηi(β) = linear function of unknown parameters

Also assumes variance essentially constant:

var(yi) = φai

with ai known (often ai ≡ 1).

Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

Generalized linear models

Problems with linear models in many applications:

I range of y is restricted (e.g., y is a count, or is binary, or is a
duration)

I effects are not additive

I variance depends on mean (e.g., large mean ⇒ large variance)

Generalized linear models specify a non-linear link function and
variance function to allow for such things, while maintaining the
simple interpretation of linear models.

Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

Generalized linear model:

g[E(yi)] = ηi = linear function of unknown parameters

var(yi) = φaiV (µi)

with the functions g (link function) and V (variance function)
known.
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Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

Examples:

I binary logistic regressions

I rate models for event counts

I log-linear models for contingency tables (including
multinomial logit models)

I multiplicative models for durations and other positive
measurements

I hazard models for event history data

etc., etc.

Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

e.g., binary logistic regression:

yi =

{
1 event happens

0 otherwise

µi = E(yi) = probability that event happens

var(yi) = µi(1− µi)

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary)
log-log, all of which transform constrained µ into unconstrained η.

Overview of Generalized Nonlinear Models in R

Linear and generalized linear models

e.g., multiplicative (i.e., log-linear) rate model for event counts.

‘Exposure’ for observation i is a fixed, known quantity ti.

Rate model:

E(yi) = ti exp(β0) exp(β1xi) exp(β2zi)

i.e.,
logE(yi) = log ti + β0 + β1xi + β2zi

— effects are rate multipliers.

Variance is typically taken as the Poisson-like function V (µ) = µ
(variance is equal to, or is proportional to, the mean).
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Overview of Generalized Nonlinear Models in R

Generalized nonlinear models

Generalized linear: η = g(µ) is a linear function of the unknown
parameters. Variance depends on mean through V (µ).

Generalized nonlinear : still have g and V , but now relax the
linearity assumption.

Many important aspects remain unchanged:

I fitting by maximum likelihood or quasi-likelihood

I analysis of deviance to assess significance of effects

I diagnostics based on residuals, etc.

But technically more difficult [essentially because ∂η/∂β = X
becomes ∂η/∂β = X(β)].

Overview of Generalized Nonlinear Models in R

Generalized nonlinear models

Some practical consequences of the technical difficulties:

I automatic detection and elimination of redundant parameters
is very difficult — it’s no longer just a matter of linear algebra

I automatic generation of good starting values for ML fitting
algorithms is hard

I great care is needed in cases where the likelihood has more
than one maximum (which cannot happen in the linear case).

Overview of Generalized Nonlinear Models in R

Structured interactions

Some motivation: structured interactions

GNMs are not exclusively about structured interactions, but many
applications are of this kind.

A classic example is log-linear models for structurally-square
contingency tables (e.g., pair studies, before-after studies, etc.).

Pairs are classified twice, into row and column of a table of counts.

The independence model is

logE(yrc) = θ + βr + γc

or with glm

> glm(y ~ row + col, family = poisson)
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Overview of Generalized Nonlinear Models in R

Structured interactions

Some standard (generalized linear) models for departure from
independence are

I quasi-independence,

y ~ row + col + Diag(row, col)

I quasi-symmetry,

y ~ row + col + Symm(row, col)

I symmetry,

y ~ Symm(row, col)

Functions Diag and Symm are provided by the gnm package along
with the function Topo for fully-specified ‘topological’ association
structures, see ?Topo.

Overview of Generalized Nonlinear Models in R

Structured interactions

Row-column association
The uniform association model (for ordered categories) has

logE(yrc) = βr + γc + δurvc

with the ur and vc defined as fixed, equally-spaced scores for the
rows and columns.

A natural generalization is to allow the data to determine the
scores (Goodman, 1979). This can be done either heterogeneously,

logE(yrc) = βr + γc + φrψc

or (in the case of a structurally square table) homogeneously,

logE(yrc) = βr + γc + φrφc

These are generalized non-linear models.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Introduction to the gnm package

The gnm package aims to provide a unified computing framework
for specifying, fitting and criticizing generalized nonlinear models in
R.

The central function is gnm, which is designed with the same
interface as glm.

Since generalized linear models are included as a special case, the
gnm function can be used in place of glm, and will give equivalent
results.

For the special case g(µ) = µ and V (µ) = 1, the gnm fit is
equivalent to an nls fit.
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Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Limitations

gnm does not allow for correlated responses or dependence of the
variance on covariates. For Gaussian data, this can be handled by
gnls.

An important limitation of gnm (and indeed of the standard glm) is
to models in which the mean-predictor function is completely
determined by available explanatory variables. Latent variables
(random effects) are not handled.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Nonlinear model terms

Nonlinear model terms are specified in model formulae using
functions of class "nonlin".

These functions specify the term structure, possibly also labels and
starting values.

There are a number of "nonlin" functions provided by gnm. Some
of these specify basic mathematical functions of predictors, e.g. a
term of the form

(α+ βx)γjk

where j and k index levels of factors A and B, is specified as
Mult(1 + x, A:B).

Other basic "nonlin" functions include Exp and Inv.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Specialized "nonlin" functions

There are two specialized "nonlin" functions provided by gnm

MultHomog: for homogeneous row and column scores, as in

αr + βc + φrφc

specified as MultHomog(row, col)

Dref: ‘diagonal reference’ dependence on a square classification,

w1γr + w2γc

(Sobel, 1981, 1985) specified as Dref(row, col)

Any (differentiable) nonlinear term can be specified by nesting
existing "nonlin" functions or writing a custom "nonlin"
function.
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Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Example: Occupational Status Data

The occupationalStatus dataset is a contingency table
classified by the occupational status of fathers (origin) and their
sons (destination).

Following Goodman (1979) we fit a homogeneous row-column
association model, separating out the diagonal effects

> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +

+ MultHomog(origin, destination), ofInterest = "MultHomog",

+ family = poisson, data = occupationalStatus)

We use the ofInterest argument to specify that only the
parameters of the multiplicative interaction should be shown in
model summaries.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Call:

gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

MultHomog(origin, destination), ofInterest = "MultHomog",

family = poisson, data = occupationalStatus)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6588 -0.4297 0.0000 0.3862 1.7208

Coefficients of interest:

Estimate Std. Error z value Pr(>|z|)

MultHomog(origin, destination)1 -1.5691 NA NA NA

MultHomog(origin, destination)2 -1.3508 NA NA NA

MultHomog(origin, destination)3 -0.7527 NA NA NA

MultHomog(origin, destination)4 -0.1688 NA NA NA

MultHomog(origin, destination)5 -0.1516 NA NA NA

MultHomog(origin, destination)6 0.3601 NA NA NA

MultHomog(origin, destination)7 0.7763 NA NA NA

MultHomog(origin, destination)8 1.0199 NA NA NA

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom

AIC: 414.9

Number of iterations: 7
Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Over-parameterization

The gnm function makes no attempt to remove redundant
parameters from nonlinear terms. This is deliberate.

As a consequence, fitted models are typically represented in a way
that is over-parameterized : not all of the parameters are
‘estimable’ (i.e., ‘identifiable’, ‘interpretable’).

In the previous example, for instance:

αr +βc+φrφc = −k2 + (αr−kφr) + (βc−kφc) + (φr +k)(φc+k)

The gnm package provides various tools (checkEstimable,
getContrasts, se) for checking the estimability of parameter
combinations, and for obtaining valid standard errors for estimable
combinations.
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Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

> getContrasts(RChomog, pickCoef(RChomog, "MultHomog"))

estimate SE quasiSE quasiVar

MultHomog(origin, destination)1 0.0000 0.0000 0.15725 0.024729

MultHomog(origin, destination)2 0.2183 0.2346 0.11901 0.014164

MultHomog(origin, destination)3 0.8165 0.1667 0.06112 0.003736

MultHomog(origin, destination)4 1.4003 0.1603 0.05184 0.002687

MultHomog(origin, destination)5 1.4175 0.1720 0.07979 0.006367

MultHomog(origin, destination)6 1.9293 0.1574 0.03598 0.001295

MultHomog(origin, destination)7 2.3454 0.1726 0.07960 0.006336

MultHomog(origin, destination)8 2.5890 0.1887 0.10953 0.011998

(The “quasi standard errors” allow the calculation of an
approximate standard error for any contrast; they are independent
of the choice of reference category. For the theory see Firth and de
Menezes (2004). More in later examples.)

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Example: Barley Heights Data

The row-column association models are special cases of the
generalized additive main effects and interaction (GAMMI) model:

g(µrc) = αr + βc +
K∑
k=1

σkφkrψkc,

Such models are often used in the analysis of crop yields. For
example, the BarleyHeights dataset contains the average
heights of 15 genotypes of barley over 9 years. We can model the
year-genotype interaction using an AMMI-1 model:

> data(barleyHeights)

> barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype),

+ ofInterest = "[.]year", data = barleyHeights)

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Call:

gnm(formula = height ~ year + genotype + Mult(year, genotype),

ofInterest = "[.]year", data = barleyHeights)

Deviance Residuals:

Min 1Q Median 3Q Max

-5.90972 -1.43403 -0.07098 1.70322 6.34119

Coefficients of interest:

Estimate Std. Error t value Pr(>|t|)

Mult(., genotype).year1974 -5.225 NA NA NA

Mult(., genotype).year1975 -11.839 NA NA NA

Mult(., genotype).year1976 -10.121 NA NA NA

Mult(., genotype).year1977 4.621 NA NA NA

Mult(., genotype).year1978 12.292 NA NA NA

Mult(., genotype).year1979 -3.270 NA NA NA

Mult(., genotype).year1980 7.665 NA NA NA

Mult(., genotype).year1981 4.046 NA NA NA

Mult(., genotype).year1982 1.826 NA NA NA

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 649.49 on 91 degrees of freedom

AIC: 685.19

Number of iterations: 8
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Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

AMMI and SVD
An AMMI-2 model may be appropriate here. Due to the identity
link the additional coefficients can be found directly from SVD of
the residuals from the previous model. We use the residSVD
function to do this

> mult2 <- residSVD(barleyModel, year, genotype, d = 1)

then set the start argument to gnm in a call to fit the AMMI-2
model, specified using the instances function:

> barleyModel2 <- gnm(height ~ year + genotype +

+ instances(Mult(year, genotype), 2),

+ start = c(coef(barleyModel), mult2),

+ data = barleyHeights)

No iterations are performed.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Comparing Models

The two AMMI models can be compared using anova

> anova(barleyModel, barleyModel2, test = "F")

Analysis of Deviance Table

Model 1: height ~ year + genotype + Mult(year, genotype)

Model 2: height ~ year + genotype + Mult(year, genotype, inst = 1)

+ Mult(year, genotype, inst = 2)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 91 649.49

2 72 448.93 19 200.55 1.6929 0.05761 .

Showing only marginal significance for the extra component.

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Estimable Contrasts for GAMMI Models

Now since, for example,

αr + βr + φrψc = αr + (βr − ψc) + (φr + 1)ψc
= αr + βr + (2φr)(ψc/2)

we need to constrain both the location and scale. To obtain the
parameterization in which σk is the singular value for component
k, the row and column scores must be constrained so that∑

r

φr =
∑
c

ψc = 0

and
∑
r

φ2
r =

∑
c

ψ2
c = 1
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Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

These constraints are met by the scaled contrasts

φr − φ̄√∑
r(φr − φ̄)2

,
ψc − ψ̄√∑
c(ψc − ψ̄)2

Which can be obtained as follows:

> phi <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"),

+ ref = "mean", scaleWeights = "unit")

> psi <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"),

+ ref = "mean", scaleWeights = "unit")

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

> phi$qvframe[c(1, 5, 9),]

Estimate Std. Error

Mult(., genotype).year1974 -0.22662084 0.05621029

Mult(., genotype).year1978 0.53320299 0.04775769

Mult(., genotype).year1982 0.07922729 0.05770322

> psi$qvframe[c(1, 5, 9),]

Estimate Std. Error

Mult(year, .).genotype1 -0.0791433 0.05913864

Mult(year, .).genotype13 0.1683167 0.05843057

Mult(year, .).genotype3 -0.1697188 0.05841527

> svd(termPredictors(barleyModel)[, "Mult(year, genotype)"])$d

43.49599

Overview of Generalized Nonlinear Models in R

Introduction to the gnm package

Multiplicative effects or heteroscedasticity?

A note of caution on interpretation
Care is needed in interpreting apparent multiplicative effects.

For example, in political science much use has been made of
generalized logit and probit models in which the standard
binary-response assumption (in terms of probit)
pr(yi = 1) = Φ(x′

iβ/σ) is replaced by a model which allows
non-constant variance in the underlying latent regression:

pr(yi = 1) = Φ[x′
iβ/ exp(z′

iγ)]

This clearly results in a multiplicative model for the mean: in R,
the above would be specified as

> gnm(y ~ -1 + Mult(x, Exp(z)), family = binomial(link="probit"))

It is therefore impossible to distinguish, with binary data, between
two distinct generative mechanisms: underlying variance depends
on z; or effect of x is modulated by z.
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Further Examples

Part II

Further Examples

Further Examples

Introduction

In this part we will consider some particular applications of gnm in
some detail, showing some further features of the package as we
go along.

The models we shall demonstrate are as follows

I the stereotype model (Anderson, 1984), for ordered
categorical response

I UNIDIFF models (Xie, 1992; Erikson and Goldthorpe, 1992)
for 3-way contingency tables

I biplot models (Gabriel, 1998) for projecting data onto two
linearly independent dimensions

I the Lee-Carter model (Lee and Carter, 1992) for mortality
data

Further Examples

Stereotype model for ordinal response

Stereotype Models

The stereotype model (Anderson, 1984) is suitable for ordered
categorical data. It is a special case of the multinomial logistic
model:

pr(yi = c|xi) =
exp(β0c + βTc xi)∑
r exp(β0r + βTr xi)

in which only the scale of the relationship with the covariates
changes between categories:

pr(yi = c|xi) =
exp(β0c + γcβ

Txi)∑
r exp(β0r + γrβ

Txi)
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Further Examples

Stereotype model for ordinal response

The stereotype model can be fitted using gnm by re-expressing the
categorical data as counts and fitting the log-linear model

logµic = αi + β0c + γc
∑
r

βrxir.

The function expandCategorical converts categorical data into
the desired format.

Further Examples

Stereotype model for ordinal response

Example: Back Pain Data
The backPain data set is taken from Anderson’s paper. For 101
patients it records 3 prognostic variables recorded at baseline and
their level of back pain after 3 weeks.

> backPain[1,]

x1 x2 x3 pain

1 1 1 1 same

> backPainLong <- expandCategorical(backPain, "pain")

> head(backPainLong)

x1 x2 x3 pain count id

1 1 1 1 worse 0 1

1.1 1 1 1 same 1 1

1.2 1 1 1 slight.improvement 0 1

1.3 1 1 1 moderate.improvement 0 1

1.4 1 1 1 marked.improvement 0 1

1.5 1 1 1 complete.relief 0 1

Further Examples

Stereotype model for ordinal response

The sterotype model can then be fitted as follows

> stereotype <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3),

+ eliminate = id, family = poisson, data = backPainLong)

The eliminate argument of gnm is used to specify that the id
parameters replace the intercept in the model. This way gnm will
use a method exploiting the structure of these parameters in order
to improve the computational efficiency of their estimation, and the
parameters will be excluded from summaries of the model object.
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Further Examples

Stereotype model for ordinal response

We can compare the stereotype model to the multinomial logistic
model:

> logistic <- gnm(count ~ pain + pain:(x1 + x2 + x3),

+ eliminate = id, family = poisson, data = backPainLong)

> anova(stereotype, logistic)

anova(stereotype, logistic, test = "Chisq")

Analysis of Deviance Table

Model 1: count ~ pain + Mult(pain, x1 + x2 + x3)

Model 2: count ~ pain + pain:x1 + pain:x2 + pain:x3

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 493 303.100

2 485 299.015 8 4.085 0.849

Further Examples

Stereotype model for ordinal response

In order to make the category-specific multipliers identifiable, we
must constrain both the location and scale.

One way to do this is to set the last multiplier to one and fix the
coefficient of the first covariate to one. We can do this using the
constrain and constrainTo arguments of gnm:

> stereotype <- gnm(count ~ pain + Mult(pain, offset(x1) + x2 + x3),

+ eliminate = id, family = poisson, data = backPainLong,

+ constrain = "[.]paincomplete.relief", constrainTo = 1)

> ofInterest(stereotype) <- pickCoef(stereotype, "Mult")

Further Examples

Stereotype model for ordinal response

> parameters(stereotype)

Coefficients of interest:

Mult(., x2 + x3 + offset(x1)).painworse

6.3718456

Mult(., x2 + x3 + offset(x1)).painsame

2.6621173

Mult(., x2 + x3 + offset(x1)).painslight.improvement

2.8621571

Mult(., x2 + x3 + offset(x1)).painmoderate.improvement

3.7389111

Mult(., x2 + x3 + offset(x1)).painmarked.improvement

1.7602579

Mult(., x2 + x3 + offset(x1)).paincomplete.relief

1.0000000

Mult(pain, . + x3 + offset(x1)).x2

0.5735620

Mult(pain, x2 + . + offset(x1)).x3

0.5050045
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Further Examples

UNIDIFF (log-multiplicative) models for strength of association

UNIDIFF-type models

High-order interactions in their ‘raw’ form can involve large
numbers of parameters. Often more economical/interpretable
summaries are possible.

The classic ‘UNIDIFF’ model relates to a 3-way table of counts
yrct, viewed as a set of T two-way tables yrc1, yrc2, . . . , yrct.

Interest is in the row-column association, and variation between
tables t in the strength of that association.

The UNIDIFF model postulates a common pattern of (log) odds
ratios, modulated by a constant that is specific to each table:

log(µrct) = αrt + βct + eγtδrc

Further Examples

UNIDIFF (log-multiplicative) models for strength of association

Example: Social Mobility Data

The yaish dataset is a study of social mobility by Yaish (1998,
2004). It is a 3-way contingency table classified by:

orig father’s social class (7 levels)

dest son’s social class (7 levels)

educ son’s education level (5 levels)

Interest is in the affect of educ on the interaction between orig
and dest

Further Examples

UNIDIFF (log-multiplicative) models for strength of association

UNIDIFF Model

The UNIDIFF model

log(µrct) = αrt + βct + eγtδrc

can be specified using Mult and Exp

> unidiff <- gnm(Freq ~ educ*orig + educ*dest +

+ Mult(Exp(educ), orig:dest),

+ ofInterest = "[.]educ", family = poisson,

+ data = yaish, subset = (dest != 7))

Primary interest is in γ1, . . . , γ5, which measure the relative
strength of interaction in the 5 tables. Only the differences γt− γs,
and other such contrasts, are identifiable.
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Further Examples

UNIDIFF (log-multiplicative) models for strength of association

> unidiffContrasts <- getContrasts(unidiff, ofInterest(unidiff))

> summary(unidiffContrasts, digits = 2)

Model call: gnm(formula = Freq ~ educ * orig + educ * dest +

Mult(Exp(educ), orig:dest), ofInterest = "[.]educ",

family = poisson, data = yaish, subset = (dest != 7))

estimate SE quasiSE quasiVar

Mult(Exp(.), orig:dest).educ1 0.00 0.00 0.098 0.0095

Mult(Exp(.), orig:dest).educ2 -0.23 0.16 0.129 0.0166

Mult(Exp(.), orig:dest).educ3 -0.74 0.23 0.212 0.0449

Mult(Exp(.), orig:dest).educ4 -1.04 0.34 0.326 0.1063

Mult(Exp(.), orig:dest).educ5 -2.25 0.95 0.936 0.8754

Worst relative errors in SEs of simple contrasts (%): -0.9 1.4

Worst relative errors over *all* contrasts (%): -3.6 2.1

Further Examples

UNIDIFF (log-multiplicative) models for strength of association

Contrasts Plot

plot(unidiffContrasts, xlab = "Education Level", levelNames = 1:5)
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Further Examples

UNIDIFF (log-multiplicative) models for strength of association

Profiling

> unidiff2 <- update(unidiff, constrain = "[.]educ1")

> prof <- profile(unidiff2, ofInterest(unidiff2), trace = TRUE)

> plot(prof)
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Further Examples

UNIDIFF (log-multiplicative) models for strength of association

Profile Confidence Intervals

> conf <- confint(prof)

> print(conf, digits = 2)

2.5 % 97.5 %

Mult(Exp(.), orig:dest).educ1 NA NA

Mult(Exp(.), orig:dest).educ2 -0.6 0.1

Mult(Exp(.), orig:dest).educ3 -1.5 -0.2

Mult(Exp(.), orig:dest).educ4 -2.6 -0.3

Mult(Exp(.), orig:dest).educ5 -Inf -0.7

Further Examples

Biplot models for two-way data

Biplots

Biplots are graphical displays of data arrays which represent the
objects that index all dimensions of the array on the same plot.

So for a two-way table, a biplot represents both the rows and
columns at the same time.

The biplot is constructed from a rank-2 representation of the data.
Here we consider the generalized bilinear model

g(µij) = α1iβ1j + α2iβ2j

Further Examples

Biplot models for two-way data

Example: Leaf Blotch Data

The barley data set gives the percentage of leaf area affected by
leaf blotch for 10 varieties of barley grown at nine sites.

As suggested by Wedderburn (1974) we model these data using a
logit link and a variance proportional to the square of that of the
binomial, i.e. V (µ) = µ2(1− µ)2
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Further Examples

Biplot models for two-way data

> set.seed(138)

> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),

+ family = wedderburn, data = barley)

The effect of site i can be represented by the point

(α1i, α2i)

in the space spanned by the linearly independent basis vectors

a1 = (α11, α12, . . . α19)T

a2 = (α21, α22, . . . α29)T

Further Examples

Biplot models for two-way data

Thus we can represent the sites and varieties separately as follows

> coefs <- matrix(coef(biplotModel), nc = 2)

> A <- coefs[1:9,]

> B <- coefs[-c(1:9),]

> par(mfrow = c(1, 2))

> plot(A, pch = levels(barley$site),

+ xlim = c(-4, 4), ylim = c(-4, 4))

> plot(B, pch = levels(barley$variety),

+ xlim = c(-4, 4), ylim = c(-4, 4))

Further Examples

Biplot models for two-way data
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Further Examples

Biplot models for two-way data

Interpreting such plots can be misleading however, because the
basis vectors are not orthogonal.

Furthermore, to provide insight into the model as a whole, we
would like to create a combined plot, therefore require basis
vectors with the same scale.

We can obtain basis vectors with the desired properties via SVD of
the predictors: the model stays the same, but the parametrization
changes.

Further Examples

Biplot models for two-way data

> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9), 2, 2)

> A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")

> B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")

> # all.equal(c(t(A %*% t(B))), unname(biplotModel$predictors))

> plot(rbind(A, B),

+ pch = c(levels(barley$site), levels(barley$variety)),

+ xlim = c(-5, 5), ylim = c(-5, 5))

Further Examples

Biplot models for two-way data
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Further Examples

Biplot models for two-way data

The product ABT is unaffected by rotation or reciprocal scaling,
so we apply a rotation to align the points with the axes and scale
so that the scores for the sites are about +1 on the vertical scale

> a <- pi/5

> rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)),

+ 2, 2, byrow = TRUE)

> rA <- (2 * A/3) %*% rotation

> rB <- (3 * B/2) %*% rotation

> plot(rbind(rA, rB),

+ pch = c(levels(barley$site), levels(barley$variety)),

+ xlim = c(-5, 5), ylim = c(-5, 5))

Further Examples

Biplot models for two-way data
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Further Examples

Biplot models for two-way data

In the original biplot, the co-ordinates for the sites and varieties
were given by the rows of A and B respectively, i.e

αTi =
√
d(u1i, u2i)

βTj =
√
d(v1j , v2j)

The rotated and scaled biplot suggests the simpler model

αTi = (γi, 1)

βTj = (δ0 + δ1I(j ∈ {2, 3, 6}), τj)

which Gabriel describes as a double additive model.
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Further Examples

Biplot models for two-way data

We fit the double additive model as follows

> variety.binary <- barley$variety %in% c(2, 3, 6)

> doubleAdditive <- update(biplotModel,

+ . ~ -1 + variety + Mult(site, variety.binary))

Comparing the models, we can confirm that the double additive
model is adequate
Analysis of Deviance Table

Model 1: y ~ 0 + variety + Mult(site, variety.binary)

Model 2: y ~ 0 + Mult(site, variety, inst = 1) +

Mult(site, variety, inst = 2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 71 50.966

2 56 41.024 15 9.942 0.803

Further Examples

Lee-Carter models for mortality trends

Lee-Carter model for mortality trends

For the study and projection of age-specific population mortality
rates, Lee and Carter (1992) proposed a model that has been the
basis of many subsequent analyses.

Suppose that death count Day for individuals of age a in year y
has mean µay and ‘quasi-Poisson’ variance φµay.

Lee-Carter model :

log(µay/eay) = αa + βaγy ,

where eay is the ‘exposure’ (number of lives at risk).

A generalized nonlinear model with a single multiplicative term.

Further Examples

Lee-Carter models for mortality trends

Example: Mortality in Canada

Data from the Human Mortality Database on male deaths in
Canada between 1921 and 2003.

Fit the Lee-Carter model:

> LCmodel <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),

+ offset = log(mExposure), family = "quasipoisson",

+ data = Canada)

Here we use the fact that the model only really makes sense if all
of the βa parameters, which represent the ‘sensitivity’ of age group
a to a change in the level of general mortality, have the same sign:
we impose this constraint by using Exp(Age) instead of just Age in
the multiplicative term.

Residual deviance is 32422.68 on 6400 degrees of freedom —
substantial overdispersion relative to Poisson.
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Further Examples

Lee-Carter models for mortality trends

Where is the overdispersion? Look at residuals:

> with(Canada, {
+

+ res <- residuals(LCmodel, type = "pearson")

+

+ plot(Age, res, xlab="Age", ylab="Pearson residual",

+ main = "(a) Residuals by age")

+

+ plot(Year, res, xlab="Year", ylab="Pearson residual",

+ main = "(b) Residuals by year")

+

+ })

Further Examples

Lee-Carter models for mortality trends
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Further Examples

Lee-Carter models for mortality trends

Look more closely at the two age groups that exhibit most of the
over-dispersion:

> plot(Year[(age>24) & (age<36)], res[(age>24) & (age<36)],

+ xlab = "Year", ylab = "Pearson residual",

+ main = "(c) Age group 25-35")

> plot(Year[(age>49) & (age<66)], res[(age>49) & (age<66)],

+ xlab = "Year", ylab = "Pearson residual",

+ main = "(d) Age group 50-65")
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Further Examples

Lee-Carter models for mortality trends
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(for more detail on this example see the gnm vignette)

Further Examples

More in the package...

Other examples in the gnm package

In the gnm vignette, other examples include:

I more general RC(m) association models;

I diagonal reference models in social mobility studies;

I compound exponential decay curves.

Further examples in gnm package help files include:

I “double unidiff” models for a 4-dimensional association
structure in political sociology (cautres);

I Rasch-type scaling of legislative roll calls (House2001).

Further Examples

More in the package...

To conclude...

I Current gnm handles many much-used generalized nonlinear
model types.

I Formula interface encourages experimentation, and
uninhibited modelling.

I Key to generality of implementation is the use of
over-parameterized model representation; tools are provided
for handling this correctly.

I More generality still? Random effects in nonlinear terms.
MLE is then difficult; approximations (PQL) or composite
(pseudo) likelihoods? On-going.
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