Escaping RGBland: Selecting Colors for Statistical Graphics

Achim Zeileis, Kurt Hornik, Paul Murrell

http://statmath.wu.ac.at/~zeileis/
Color in statistical graphics

Color:

- Integral element in graphical displays.
- Easily available in statistical software.

Problem: Little guidance about how to choose appropriate colors for a particular visualization task.

Question: What are useful color palettes for coding qualitative and quantitative variables?
Challenges

- Basic principles: Colors should be intuitive, avoid large areas of saturated colors.
- Purpose: Distinguish different elements of a statistical graphic depending on the levels of some variable.
- Control of perceptual properties: hue, brightness, colorfulness.
- Employ a color model or color space.
 - RGB (Red-Green-Blue): Corresponds to generation of colors on computer, unintuitive for humans.
 - HSV (Hue-Saturation-Value): Simple transformation of RGB, easily available. But: Maps poorly to perceptual properties, encourages use of highly saturated colors.
 - HCL (Hue-Chroma-Luminance): Transformation of CIELUV space, mitigates problems above.
- Ideally, colors should work for: Screen, projector, (grayscale) printer, color-blind viewers, ...
Tools (in R)

Basic color spaces: rgb(), hsv(), hcl(), ...

HSV-based palettes: rainbow(), heat.colors(), ...

More suitable tools: RColorBrewer (fixed palettes from ColorBrewer.org), ggplot2, plotrix, colorRamp() (based on RGB and CIELAB), ...

Here: colorspace with RGB(), polarLUV(), ..., and rainbow_hcl(), heat_hcl(), sequential_hcl(), diverge_hcl(), ...

Result: Similar to ColorBrewer.org but with more flexibility and more insight into underlying ideas.

Example: Heatmap of bivariate kernel density estimate for Old Faithful geyser eruptions data
Example: Heatmap
Example: Heatmap
Example: Heatmap
Types of palettes

Qualitative:
- Code categorical information.
- Examples: Barplot, mosaic display, …
- Use different hues, keeping chroma and luminance fixed: e.g., \((H, 50, 70)\).
Types of palettes

Sequential:
- Code numerical information ranging from “uninteresting” to “interesting”.
- Increase luminance along with interestingness.
- Additionally increase chroma. Potentially vary hue.
- When interestingness i is standardized to $[0, 1]$:
 $$(H_2 - i \cdot (H_1 - H_2), C_{\max} - i' \cdot (C_{\max} - C_{\min}), L_{\max} - i'' \cdot (L_{\max} - L_{\min})).$$

Diverging:
- Code numerical information diverging from neutral value into two directions of “interestingness”.
- Combine two sequential palettes with different hues.
Example: Model deviations

Application: Childhood mortality in Nigeria.

- Posterior mode estimates (without spatial effect).
- Map of Nigeria shaded by model deviations.
- Investigate typical HSV-based vs. HCL-based palette.
- Investigate effects of color-blindness (protanopic vision) by means of *dichromat* package.
Example: Model deviations
Summary

- Use color with care, don’t overestimate power of color.
- Avoid large areas of flashy, highly saturated colors.
- Employ monotonic luminance scale for numerical data.
- HCL space allows for intuitive variation of perceptual properties.
- Formulas for palettes are easy to implemented in new software.
- Convenience functions (similar to base R tools) are readily provided in `colorspace`.

