Streaming Data And
Concurrency In R

ué‘g@/
Rory Winston

rory@theresearchkitchen.com

Independent Software Consultant

°
@ M.Sc. Applied Computing, 2000
@ M.Sc. Finance, 2008

o Apache Committer

°

Interested in practical applications of functional languages and
machine learning

Really interested in seeing R usage grow in finance

© A Short Rant

© Why We Need Concurrency
© Motivating Example

@ Conclusion

© References and Further Reading

A Short Rant

Parallelization vs. Concurrency in R

o Multithreading vs. parallelization
@ i.e. fork() vs. pthread_create()
@ R interpreter is single threaded
@ Some historical context for this (e.g. non-threadsafe BLAS
implementations)
o Multithreading can be complex and problematic
@ Instead a focus on parallelization:
o Distributed computation: gridR, nws, snow
o Multicore/multi-cpu scaling: Rmpi, Romp, pnmath
o Interfaces to PBLAS/Hadoop/OpenMP /MPI/Globus/etc.
o Parallelization suits large CPU-bound processing applications
@ So do we really need it at all then?

Why We Need Concurrency

Multithreading Is A Valuable Tool

o | say, "yes"

o For general real-time (streaming to be more precise) data
analysis

o (Growing interest in using R for streaming data, not just
offline analyis)

e GUI toolkit integration
@ Fine-grained control over independent task execution

e Fine-grained control over CPU-bound and 1/O-bound task
management
@ "I believe that explicit concurrency management tools (i.e. a

threads toolkit) are what we really need in R at this point.” -
Luke Tierney, 2001

Why We Need Concurrency

Will There Be A Multithreaded R?

@ Short answer is: Most likely not

o At least not in its current incarnation

@ Internal workings of the interpreter not particularly amenable
to concurrency:
e Functions can manipulate caller state («- vs. <-)
e Lazy evaluation machinery (promises)
Dynamic State, garbage collection, etc.
Scoping: global environments
Management of resources: streams, 1/O, connections, sinks

@ Implications for current code

@ Possibly in the next language evolution (cf. lhaka?)

Motivating Example

Motivating Example

Based on work | did last year and presented at UseR! 2008

Wrote a real-time and historical market data service from
Reuters/R

The real-time interface used the Reuters C++4+ API

R extension that spawned listening thread and handled market
updates

@ New version also does publishing as well as subscribing

Motivating Example

Motivating Example

@ The (real-world) example involves building a new
high-frequency trading system

e Step 1 is handling market prices (in this case interbank
currency prices)

@ Need to ensure that the new system'’s prices are:

o Correct;
o Fast

Motivating Example

C++ RMDS API

RMDS Message Bus

Motivating Example

Issues With This Approach

@ As R interpreter is single threaded, cannot spawn thread for
callbacks

@ Thus, interpreter thread is locked for the duration of
subscription

@ Not a great user experience

@ Need to find alternative mechanism

Motivating Example

Alternative Approach

o If we cannot run subscriber threads in-process, need to
decouple

@ Standard approach: add an extra layer and use some form of
IPC
@ For instance, we could:

o Subscribe in a dedicated R process (A)
o Push incoming data onto a socket
e R process (B) reads from a listening socket

@ Sockets could also be another IPC primitive, e.g. pipes, shared
mem

@ We will use the bigmemoRy package to leverage the latter

Motivating Example

The bigmemoRy package

@ From the description: "Use C++ to create, store,
access, and manipulate massive matrices"

@ Allows creation of large (> RAM) matrices
@ These matrices can be mapped to files/shared memory

@ It is the shared memory functionality that we will use

big.matrix(nrow, ncol, type = "integer",)
shared.big.matrix(nrow, ncol, type = "integer", ...)
filebacked.big.matrix(nrow, ncol, type = "integer", ...)

read.big.matrix(file, sep=, ...)

Motivating Example

Sample Usage

> library(bigmemory)

> X <- shared.big.matrix(type="double", ncol=1000, nrow=1000)
> X

An object of class ‘“big.matrix”’

Slot "address":

<pointer: 0x7378a0>

Motivating Example

Create Shared Memory Descriptor

> desc <- describe(X)
> desc

$sharedType

[1] "SharedMemory"

$sharedName
[1] "53f14925-dcal-42a8-ab47-elbccae999ce"

$nrow
[1] 1000

$ncol
[1] 1000

$rowNames
NULL

$colNames
NULL

$type
[1] "double"

Motivating Example

Export the Descriptor

In R session 1:
> dput(desc, file="/tmp/matrix.desc")
In R session 2:

> library(bigmemory)
> desc <- dget("/tmp/matrix.desc")
> X <- attach.big.matrix(desc)

Now R sessions A and B share the same big.matrix instance

Motivating Example

Share Data Between Sessions

R session 1:
> X[1,1] <- 1.2345
R session 2:

> X[1,1]
[1] 1.2345

Thus, streaming data can be continuously fed into session A
And concurrently processed in session B

Motivating Example

< ; RMDS Message Bus

RMDS Message Bus

Conclusion

Summary

@ Lack of threads not necessarily a barrier to concurrent analysis

@ Packages like bigmemoRy, nws, etc. facilitate decoupling via
IPC

e Could potentially take this further (using e.g. nws)

References and Further Reading

References

@ bigmemoRy:
http://cran.r-project.org/web/packages/bigmemory/

@ Luke Tierney's original threading paper:
http://www.cs.uiowa.edu/"luke/R/thrgui/

@ HPC and R Survey:
http://epub.ub.uni-muenchen.de/8991/

@ Inside The Python GIL:
www .dabeaz. com/python/GIL.pdf

http://cran.r-project.org/web/packages/bigmemory/
http://www.cs.uiowa.edu/~luke/R/thrgui/
http://epub.ub.uni-muenchen.de/8991/
www.dabeaz.com/python/GIL.pdf

	A Short Rant
	Why We Need Concurrency
	Motivating Example
	Conclusion
	References and Further Reading

