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BNOSAC @ ThomasCook
Challenges from a data mining point of view + solutions

Connecting R with the outside world / our user experience

Group of consultants focussed on open source analytical
engineering

Poor man's Bl:
Python/PostgreSQL/Pentaho/OpenOffice/R. ..

python
PN a
OpenOfficeorg povered .

Expertise in predictive data mining, biostatistics, geostats,
python programming, GUI building, artificial intelligence
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Challenges from a data mining point of view + solutions

Connecting R with the outside world / our user experience

Sell holidays (sun and beach in this user case)
70 destinations around Mediterranean and Americas

Own planes & bought seats need to be filled with passengers
Flight frequence for some destinations up to 4 flights within
one day. Some flights can be combined
(BRU->ACE->FUE->ACE->BRU)
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Last minute prices departures Brussels/Liege/Ostend/Lille
Up to 2 months before departure

People book now to go on holiday e.g. August 10, 2009 to
destination X. Can stay 3-28 nights, choose among several
hotels, with certain board (All Inclusive, B&B, ...) and
certain room type.

# prices in August: 31 days x 12 durations x 2 brands x 20 hotels
X 4 boards x 3 room types = +248000 prices

Prices can go " or \, depending on offer and demand
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Connecting R with the outside world / our user experience

Fill the planes at the highest prices so that the plane doesn't fill
too fast and make sure all seats are filled.

Currently 2.9 Mio promotional prices on the market. Prices
change dayly.

Only cover approaches towards prices of packages (flight +
hotel), only price effects of couples (so no children).
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A lot of factors influencing bookings:
Holiday information / Day of the week
Flight information (hours of departure and of return flights,
availability of flights)

Weather
Prices (2 brands, competitor) and price evolution
Cannibalisation (risk of losing passengers to yourself)
prices of similar destinations - last minute customers only
want the sun at the cheapest price
prices on similar departure dates (a few days later/earlier)
Days before departure
... dimensionality is large (> 100000 factors could influence
bookings on flight from BRU to HRG on August 10, 2009)

Find the best price settings over all these parameters to;

optimize margin / minimize risk / optimize market shar

Jan Wijffels: jwijffels@bnosac.be




BNOSAC @ ThomasCook
Challenges from a data mining point of view + solutions

Connecting R with the outside world / our user experience

O Data size last year only

own last minute promotional prices: >450 million records.
competitor prices

flight info: £ 60000 flights on the market x 365 days +
21.900.000 records

weather info at noon:

70 destinations x 365 days x weather forecasts

Speed
"Hello prices” at £70'clock in the morning (mainframe).

g "Hello employees” at +8h30 in the morning
4+1h30 to make predictions and give 'best’ automatic prjce
proposals
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Out of the box solutions exist in R. 'Best practice’ approach:
Pimp SQLite so that it can handle tables with up to 30000
columns. Raw model tables dim 20.000.000 x 30000
Data preparation (missing values, split numeric data in
categories) - do heavy reshaping/juggling/merging/indexing in
(R)SQLite & sqldf, use R for advanced data features
Sample depending on CPU/RAM and statistical technique:
we have 4 dual cores, 64bit Linux, 32Gb RAM.
Reduce: GLM with penalization on the size of the L1 norm of
the coefficients L(B,\) = —>_7_, i0(8)ib(6(8)i) + M| B|1
(glmpath package)
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Only most important predictors to build randomForest
Use randomForest model to predict how fast the flights will

BRU -> HRG
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Get the price effects from the randomForest model and use it:

Do fast 1- or 2-dimensional optimisation to fill seats that will
not be filled according to the forecast at the optimal price.
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Prediction and optimisation is nice but not enough

Managers reason with words/concepts. Mimic them and combine
their logic with predictive logic. How?

Map business concepts to
fuzzy sets.

| Precision and Significance in the Real World "

Make fuzzy rule-based
engine reflecting how
managers/business users
decide on price settings

Do fuzzy inference to precsion Signicance
obtain new price settings

ijffels@bnosac.be
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Map business concepts to fuzzy sets.

Listen to the people.
Fuzzy concepts have
blurred boundaries.

Map linguistic variables to
a membership degree
pu(x) €[0,1]

sets package (Hornik K.,
Meyer D., Buchta C.)
fuzzy_normal,
fuzzy_trapezoid,
fuzzy_sigmoid, ...

Low-level fuzzy sets/inputs Higher-level fuzzy sets/inputs
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Make fuzzy rule-based engine, do fuzzy inference & defuzzify.

rules <- set(
fuzzy_rule(predicted_risk %is’ low, price_change %is% up),
fuzzy_rule(predicted_risk %is% high
& competitor_risk %is?% high, price_change %is’% down_high’
D)
simple.system <- fuzzy_system(variables, rules)
fuzzy.best.price <- fuzzy_inference(simple.system, NEWDATA
gset_defuzzify(fuzzy.best.price, "centroid")

Different business strategies can be easily mapped to fuzzy
inference engines.
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Prediction, optimisation and improving on business users
is nice but not enough, you need to influence the business process
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Connecting R with the outside world / our user experience

PL/R.
Had a lot of shared memory problems while other processes
were runnning. But probably overkilled it (run PL/R script
which calls some R code from within R process that uses
RdbiPgSQL)
Debugging hell.
R & SQLite is our best choice for heavy data juggling.
PL/R is OK for collecting information on diverse data sources
in 1 call from a remote machine.
Useful for plotting purposes in SaaS framework.
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Connecting R with the outside world / our user experience

User interfaces - developer view

Combining wxPython and R through RPy2 is easy and simple.
py2exe gives easy python binary executables, people only need
to have R installed to access its power

User interfaces - IT view

IT departments don't like R

R should be SaaS, central server where people can connect to
User interfaces - business user point of view

They don't care about R

GUI and plotting the results helped convincing them

Fuzzy logic allowed them to interact and stick to the business.

Combining the results with an improved business process was
the most convincing factor.

Jan Wijffels: jwijffels@bnosac.be



BNOSAC @ ThomasCook
Challenges from a data mining point of view + solutions

Connecting R with the outside world / our user experience

http://www.bnosac.be

Jan Wijffels: jwijffels@bnosac.be


http://www.bnosac.be

	BNOSAC @ ThomasCook
	Who are we
	Business of ThomasCook Belgium
	Introduction to last minute prices

	Challenges from a data mining point of view + solutions
	Optimisation problem
	Data & speed challenge
	Architectural solution
	Analytical solution - optimal prices with business tactics
	Analytical solution: Fuzzy Logic

	Connecting R with the outside world / our user experience
	Influence the business process
	PL/R, RPy2, GUI's in R, people
	Questions?


