Distributed Text Mining with tm

Stefan Theußl1 Ingo Feinerer2 Kurt Hornik1

Department of Statistics and Mathematics,
WU Vienna University of Economics and Business1

Institute of Information Systems, DBAI Group
Technische Universität Wien2

08.07.2009
Text Mining in R

▶ Highly interdisciplinary research field utilizing techniques from computer science, linguistics, and statistics
▶ Vast amount of textual data available in machine readable format:
 ▶ scientific articles, abstracts, books, . . .
 ▶ memos, letters, . . .
 ▶ online forums, mailing lists, blogs, . . .
▶ Steady increase of text mining methods (both in academia as in industry) within the last decade
Text Mining in R

- **tm Package**
- Tailored for
 - Plain texts, articles and papers
 - Web documents (XML, SGML, ...)
 - Surveys
- Available *transformations*: `stemDoc()`, `stripWhitespace()`, `tmTolower()`, ...
- Methods for
 - Clustering
 - Classification
 - Visualization
- Feinerer (2009) and Feinerer et al. (2008)
Motivation

▶ Data volumes (corpora) become bigger and bigger
▶ Many tasks, i.e. we produce output data via processing lots of input data
▶ Text mining methods are becoming more complex and hence computer intensive
▶ Want to make use of many CPUs
▶ Typically this is not easy (parallelization, synchronization, I/O, debugging, etc.)
▶ Need for an integrated framework
▶ preferably usable on large scale distributed systems

→ Main motivation: large scale data processing
Motivation

- Multi-processor environments and large scale compute clusters/clouds available for a reasonable price
- Integrated frameworks for parallel/distributed computing available (e.g., Hadoop)
- Thus, parallel/distributed computing is now easier than ever
- R already offers extensions to use this software (e.g. via hive, nws, Rmpi, snow, etc.)
Distributed Text Mining in R

Example: Stemming

- Erasing word suffixes to retrieve their radicals
- Reduces complexity
- Stemmers provided in packages Rstem1 and Snowball2

Data:

- *Reuters-21578*: one of the most widely used test collection for text categorization research
- *New York Times Annotated Corpus*: > 1.6 million text files

1Duncan Temple Lang (version 0.3-1 on Omegahat)
2Kurt Hornik (version 0.0-6 on CRAN)
Distributed Text Mining in R

Difficulties:

- Large data sets
- Corpus typically loaded into memory
- Operations on all elements of the corpus (so-called *transformations*)

Strategies:

- Text mining using tm and MapReduce/hive\(^1\)
- Text mining using tm and MPI/snow\(^2\)

\(^{1}\)Stefan Theußl (version 0.1-1)
\(^{2}\)Luke Tierney (version 0.3-3)
The MapReduce Programming Model
The MapReduce Programming Model

- Programming model inspired by functional language primitives
- Automatic parallelization and distribution
- Fault tolerance
- I/O scheduling
- Examples: document clustering, web access log analysis, search index construction, ...
- Dean and Ghemawat (2004)

Hadoop (http://hadoop.apache.org/core/) developed by the Apache project is an open source implementation of MapReduce.
The MapReduce Programming Model

Figure: Conceptual Flow
The MapReduce Programming Model

A MapReduce implementation like Hadoop typically provides a distributed file system (DFS):

- Master/worker architecture (Namenode/Datanodes)
- Data locality
- Map tasks are applied to partitioned data
- Map tasks scheduled so that input blocks are on same machine
- Datanodes read input at local disk speed
- Data replication leads to fault tolerance
- Application does not care whether nodes are OK or not
Hadoop Streaming

- Utility allowing to create and run MapReduce jobs with any executable or script as the mapper and/or the reducer

```
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar
  -input inputdir
  -output outputdir
  -mapper ./mapper
  -reducer ./reducer
```
Hadoop InteractiVE (hive)
Hadoop InteractiVE (hive)

hive provides:

- Easy-to-use interface to Hadoop
- Currently, only Hadoop core (http://hadoop.apache.org/core/) supported
- High-level functions for handling Hadoop framework (hive_start(), hive_create(), hive_is_available(), etc.)
- DFS accessor functions in R (DFS_put(), DFS_list(), DFS_cat(), etc.)
- Streaming via Hadoop (hive_stream())
- Available on R-Forge in project RHadoop
Example: Word Count

Data preparation:

```r
> library("hive")
Loading required package: rJava
Loading required package: XML
> hive_start()
> hive_is_available()
[1] TRUE
> DFS_put("~/Data/Reuters/minimal", "/tmp/Reuters")
> DFS_list("/tmp/Reuters")
[1] "reut-00001.xml" "reut-00002.xml" "reut-00003.xml"
[4] "reut-00004.xml" "reut-00005.xml" "reut-00006.xml"
[7] "reut-00007.xml" "reut-00008.xml" "reut-00009.xml"
> head(DFS_read_lines("/tmp/Reuters/reut-00002.xml"))
[1] "<?xml version="1.0"?>"
[2] "<REUTERS TOPICS="NO" LEWISSPLIT="TRAIN" [...]"
[4] " <TOPICS/>
[5] " <PLACES>
[6] "  <D>usa</D>"
```
Example: Word Count

```r
mapper <- function(){
  mapred_write_output <- function(key, value)
    cat(sprintf("%s\t%s\n", key, value), sep = "")

  trim_white_space <- function(line)
    gsub("(^ +)|( +$)", "", line)
  split_into_words <- function(line)
    unlist(strsplit(line, "[[[:space:]]+"))

  con <- file("stdin", open = "r")
  while (length(line <- readLines(con, n = 1,
        warn = FALSE)) > 0) {
    line <- trim_white_space(line)
    words <- split_into_words(line)
    if(length(words))
      mapred_write_output(words, 1)
  }
  close(con)
}
```
Example: Word Count

```r
reducer <- function(){
  [...]  
env <- new.env(hash = TRUE)
con <- file("stdin", open = "r")
while (length(line <- readLines(con, n = 1,
    warn = FALSE)) > 0) {
  split <- split_line(line)
  word <- split$word
  count <- split$count
  if(nchar(word) > 0){
    if(exists(word, envir = env, inherits = FALSE)) {
      oldcount <- get(word, envir = env)
      assign(word, oldcount + count, envir = env)
    }
    else assign(word, count, envir = env)
  }
  close(con)
  for (w in ls(env, all = TRUE))
    cat(w, "\t", get(w, envir = env), "\n", sep = "")
}
```
Example: Word Count

```r
> hive_stream(mapper = mapper,
  reducer = reducer,
  input = "/tmp/Reuters",
  output = "/tmp/Reuters_out")
> DFS_list("/tmp/Reuters_out")
[1] "_logs" "part-00000"
> results <- DFS_read_lines(
  "/tmp/Reuters_out/part-00000")
> head(results)
[1] "-\t2" "--\t7"
[3] ":\t1" ".\t1"
[5] "0064</UNKNOWN>\t1" "0066</UNKNOWN>\t1"
> tmp <- strsplit(results, "\t")
> counts <- as.integer(unlist(lapply(tmp, function(x)
  x[[2]])))
> names(counts) <- unlist(lapply(tmp, function(x)
  x[[1]]))
> head(sort(counts, decreasing = TRUE))
the to and of at said
58 44 41 30 25 22
Distributed Text Mining in R

Solution (Hadoop):

- Data set copied to DFS (‘DistributedCorpus’)
- Only meta information about the corpus in memory
- Computational operations (Map) on all elements in parallel
- Work horse tmMap()
- Processed documents (revisions) can be retrieved on demand
Distributed Text Mining in R - Listing

```r
> library("tm")
Loading required package: slam
> input <- "~/Data/Reuters/reuters_xml"
> co <- Corpus(DirSource(input), [...])
> co
A corpus with 21578 text documents
> print(object.size(co), units = "Mb")
65.5 Mb

> source("corpus.R")
> source("reader.R")
> dc <- DistributedCorpus(DirSource(input), [...])
> dc
A corpus with 21578 text documents
> dc[[1]]
Showers continued throughout the week in [...]
> print(object.size(dc), units = "Mb")
1.9 Mb
```
Mapper, i.e. input to `hive_stream()` (called by `tmMap()`):

```r
mapper <- function(){
 require("tm")
 fun <- some_tm_method
 [
 con <- file("stdin", open = "r")
 while(length(line <- readLines(con, n = 1L, warn = FALSE)) > 0) {
 input <- split_line(line)
 result <- fun(input$value)
 if(length(result))
 mapred_write_output(input$key, result)
 }
 close(con)
}
```
Distributed Text Mining in R

Infrastructure:

- Development platform: 8-core Power 6 shared memory system
  - IBM System p 550
4	128
2-core IBM POWER6 @ 3.5 GHz	GB RAM
- Computers of PC Lab used as worker nodes
  - 8 PCs with an Intel Pentium 4 CPU @ 3.2 GHz and 1 GB of RAM
  - Each PC has > 20 GB reserved for DFS

MapReduce framework:

- Hadoop (implements MapReduce + DFS)
- R (2.9.0) with tm (0.4) and hive (0.1-1)
- Code implementing ‘DistributedCorpus’
- Cluster installation coming soon (loose integration with SGE)
Benchmark

Wizard of Oz data set (PC Lab cluster):

- **Runtime**
  - Graph showing runtime in seconds (s) vs. number of CPUs (1 to 8).
  - The runtime decreases as the number of CPUs increases.

- **Speedup**
  - Graph showing speedup vs. number of CPUs (1 to 8).
  - The speedup increases linearly as the number of CPUs increases.
Benchmark

Reuters-21578:

▶ Single processor runtime (\texttt{lapply()}): > 30 min.
▶ \texttt{tm/hive} on 8-core SMP (\texttt{hive\_stream()}) : 4 min.
▶ \texttt{tm/snow} on 8 nodes of cluster\texttt{@WU} (\texttt{parLapply()}) : 2.13 min.
Lessons Learned

- Problem size has to be sufficiently large
- Requirement: access text documents in R via \[ \text{file path} \], thus location of texts in DFS important (currently: \( \text{ID} = \text{file path} \))
- Serialization difficult: how updating text IDs? Currently via meta information to each chunk (chunk name, position in the chunk)
- Remote file operation on DFS around 2.5 sec. (significantly reduced with Java implementation)
Conclusion

- Use of Hadoop in particular the DFS enhances handling of large corpora
- Significant speedup in text mining applications
- Thus, MapReduce has proven to be a useful abstraction
- Greatly simplifies distributed computing
- Developer focus on problem
- Implementations like Hadoop deal with messy details
  - different approaches to facilitate Hadoop’s infrastructure
  - language- and use case dependent
Thank You for Your Attention!

Stefan Theußl
Department of Statistics and Mathematics
e-mail: Stefan.Theussl@wu.ac.at
URL: http://statmath.wu.ac.at/~theussl

WU Vienna University of Economics and Business
Augasse 2–6, A-1090 Wien
Jeffrey Dean and Sanjay Ghemawat.  
MapReduce: Simplified data processing on large clusters.  

I. Feinerer  
*tm: Text Mining Package*, 2009  
URL http://CRAN.R-project.org/package=tm  
R package version 0.3-3

I. Feinerer, K. Hornik, and D. Meyer  
Text mining infrastructure in R  
ISSN 1548-7660  
URL http://www.jstatsoft.org/v25/i05