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are those of the author alone and do not
necessarily reflect the views of Bank of
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affiliates.

“‘Bank of America Merrill Lynch” is the marketing name for the global banking and global
markets businesses of Bank of America Corporation. Lending, derivatives, and other
commercial banking activities are performed globally by banking affiliates of Bank of
America Corporation, including Bank of America, N.A., member FDIC. Securities, stra-
tegic advisory, and other investment banking activities are performed globally by in-
vestment banking affiliates of Bank of America Corporation (“Investment Banking Affili-
ates”), including, in the United States, Banc of America Securities LLC and Merrill
Lynch, Pierce, Fenner & Smith Incorporated, which are both registered broker-dealers
and members of FINRA and SIPC, and, in other jurisdictions, locally registered entities.
Investment products offered by Investment Banking Affiliates: Are Not FDIC Insured *
May Lose Value * Are Not Bank Guaranteed.
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Motivation

Sample covariance != true covariance matrix
Estimation error is large when (T >> N)

Large portfolios
Monthly time frame
Need a good estimate of covariance matrix



Approaches

Physics: Random matrix theory
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Approaches

Physics: Random matrix theory
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Approaches

Statistics: Shrinkage Estimation

Central limit
theorem
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Statistics: Shrinkage Estimation

Central limit
theorem

Weighted average
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Approaches

Statistics: Shrinkage Estimation

Central limit
theorem

Weighted average
aF + (1-a) S

Reduced
estimation error




Approaches

Which is Right?
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Random Matrix Theory

Eigenvalue distribution ofi random matrices
IS defined by the Marcenko-Pastur limit

0 VA=A, —3)

Amax/min= Uz( 1+ \g)z

Sample correlation matrices can be filtered
to remove this noise

The reconstructed matrix Iis then used In
portfolio optimization



Random Matrix Theory
Marcenko-Pastur Distributions
Random matrix with
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Random Matrix Theory

Marcenko-Pastur Distributions

Eigenvalue Distribution

Random matrix with
normal distribution;
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Random Matrix Theory

Marcenko-Pastur Distributions

Eigenvalue Distribution

Random matrix with
normal distribution;
N=50, T=200

M= 50 Bandwidth = 0 040849




Random Matrix Theory

Fitting the Null Hypothesis

Daily S&P 500: N=384,
1=1200 Eigenvalue Distribution
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Random Matrix Theory

Fitting the Null Hypothesis

Daily S&P 500 subset;
N=75, T=200
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Random Matrix Theory

Fitting the Null Hypothesis

Shuffled S&P 500; N=75,
T=200
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Shrinkage Estimation

James-Stein revealed that a global mean
exists

Shrinking samples toward a global mean
Improves accuracy of estimation

This can be applied to covariance
matrices



Shrinkage Estimation

What is the global mean?

The true mean is unknown
Many candidates exist for covariance

Identity matrix
Constant correlation matrix
Biased estimator (e.g. Barra)



Shrinkage Estimation
Shrinkage Intensity

Use a single value or
Change in optimal shrinkage constant calculate per iteration

Ledoit & Wolf propose
optimal coefficient
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Filtering Correlation Matrices

RMT reconstructs Shrinkage estimation
correlation matrix takes a weighted
from the empirical average between the
correlation matrix by sample covariance
replacing all and a global mean
eigenvalues in noise using a calculated
part ofi spectrum with shrinkage constant

thelr mean



Does It Work?

How do you measure effectiveness?
Again, two approaches

Kullback-Leibler distance
Out of sample portfolio returns

Which will you believe?



Kullback-Leibler Distance

KL distance measures the entropy.
between two probability density functions

Not a true distance - but still useful!
Triangle inequality is not satisfied
Not symmetric

Can measure information content and
stability



Theoretical Limit
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Kullback-Leibler Distance

Empirical Results
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Portfolio Performance

Minimum variance

SPX random subset (100 assets) — 175 day window, 125 dates

sharpe.ratio annual.return annual.stdev
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shrink SR 7 s —(0.120357206 . 20868 3P 2
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SPX random subset (100 assets) — 125 day window, 175 dates

sharpe.ratio annual.return annual.stdev

rmt =OMVElE 3608 20746138 0.2817482
shrink -0.83450696 -0.24169547 U8 962 ol
shrink.m 0.09709427 0.04461285 0.4594797
hybrid -0.69065240 =00 8 OGN 6 0.2748257
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market ~UMUGS (0588 8 =0 .02 9EAus 0.4470114



Portfolio Performance

Minimum variance optimization

Time



Reconciliation

Is there a connection between the
theories?

Examine eigenvalue distributions

A"
A"

nat about a

nat about ot

nybrid approach?

ner eigenvalues?



Reconciliation

RMT replaces 'noisy’ eigenvalues with average value

Sample correlation matrix Sample correlation matrix
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Random matrix theory Random matrix theory
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Reconciliation

Shrinkage scales eigenvalues towards a single value

Sample correlation matrix Sample correlation matrix

P T d
T I I I T

120 156 240 S0 a2

M =195 Bandwicth = 0.02427 M =95 Bandwicth = 0.02427

Global mean Global mean

I I T T I T
1.0 1.5 2.0 . . 45 45 S0 a2

M =95 Bandwicth = 2.3542-17 M =95 Bandwicth = 2.354e-17

After shrinkage After shrinkage
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Reconciliation

Eigenvalue distributions

The eigenvalue of the global mean is in
the noise part of the RMT spectrum!

Both methods reduce noise by averaging
out noisy eigenvalues

Difference Is In execution
Hybrid approach has no benefit
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End

All images were generated by using
Tawny (written by me)

Download Tawny from CRAN

b rowe@ml.comor r@nurometic.com
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