A Tale of Two Theories:
Reconciling random matrix theory and shrinkage estimation as methods for covariance matrix estimation

Brian Rowe
Vice President, Portfolio Analytics
Bank of America Merrill Lynch

July, 2009
The opinions expressed in this presentation are those of the author alone and do not necessarily reflect the views of Bank of America Merrill Lynch, its subsidiaries, or affiliates.

“Bank of America Merrill Lynch” is the marketing name for the global banking and global markets businesses of Bank of America Corporation. Lending, derivatives, and other commercial banking activities are performed globally by banking affiliates of Bank of America Corporation, including Bank of America, N.A., member FDIC. Securities, strategic advisory, and other investment banking activities are performed globally by investment banking affiliates of Bank of America Corporation (“Investment Banking Affiliates”), including, in the United States, Banc of America Securities LLC and Merrill Lynch, Pierce, Fenner & Smith Incorporated, which are both registered broker-dealers and members of FINRA and SIPC, and, in other jurisdictions, locally registered entities. Investment products offered by Investment Banking Affiliates: Are Not FDIC Insured * May Lose Value * Are Not Bank Guaranteed.
Overview

- Motivation
- Random Matrix Theory
- Shrinkage Estimation
- Measuring Effectiveness
 - Kullback-Leibler distance
 - Financial measures
- Reconciliation
Motivation

- Sample covariance \neq true covariance matrix
- Estimation error is large when !(T >> N)
 - Large portfolios
 - Monthly time frame
- Need a good estimate of covariance matrix
Approaches

Physics: Random matrix theory

- Eigenvalue distribution
Approaches

Physics: Random matrix theory

- Eigenvalue distribution
- Null hypothesis
Approaches

Physics: Random matrix theory

- Eigenvalue distribution
- Null hypothesis
- Remove noise component
Approaches

Statistics: Shrinkage Estimation

- Central limit theorem
Approaches

Statistics: Shrinkage Estimation

- Central limit theorem
- Weighted average
 \[\alpha F + (1-\alpha) S \]
Approaches

Statistics: Shrinkage Estimation

- Central limit theorem
- Weighted average \(\alpha F + (1-\alpha) S \)
- Reduced estimation error
Approaches

Which is Right?
Random Matrix Theory

• Eigenvalue distribution of random matrices is defined by the Marcenko-Pastur limit

\[\rho(\lambda) = \frac{Q}{2\pi \sigma^2} \frac{\sqrt{(\lambda_{max} - \lambda)(\lambda_{min} - \lambda)}}{\lambda} \]

\[\lambda_{max/min} = \sigma^2 (1 \pm \sqrt{\frac{1}{Q}})^2 \]

• Sample correlation matrices can be filtered to remove this noise

• The reconstructed matrix is then used in portfolio optimization
Random Matrix Theory
Marcenko-Pastur Distributions

- Random matrix with normal distribution; N=1000, T=4000
- Random matrix with normal distribution; N=250, T=1000
- Random matrix with normal distribution; N=50, T=200

![Eigenvalue Distribution](image)
Random Matrix Theory

Marcenko-Pastur Distributions

- Random matrix with normal distribution; $N=1000$, $T=4000$
- Random matrix with normal distribution; $N=250$, $T=1000$
- Random matrix with normal distribution; $N=50$, $T=200$

![Eigenvalue Distribution](image.png)
Random Matrix Theory
Marcenko-Pastur Distributions

- Random matrix with normal distribution; $N=1000, T=4000$
- Random matrix with normal distribution; $N=250, T=1000$
- Random matrix with normal distribution; $N=50, T=200$
Random Matrix Theory
Fitting the Null Hypothesis

- Daily S&P 500; N=384, T=1200
- Daily S&P 500 subset; N=75, T=200
- Shuffled S&P 500; N=75, T=200

\[Q = 2.072958 \]
\[\sigma = 0.8152044 \]
Random Matrix Theory

Fitting the Null Hypothesis

- Daily S&P 500; N=384, T=1200
- Daily S&P 500 subset; N=75, T=200
- Shuffled S&P 500; N=75, T=200

\[Q = 1.768204 \]
\[\sigma = 0.6321195 \]
Random Matrix Theory

Fitting the Null Hypothesis

- Daily S&P 500; N=384, T=1200
- Daily S&P 500 subset; N=75, T=200
- Shuffled S&P 500; N=75, T=200

$Q = 2.514132$
$\sigma = 1.019011$
Shrinkage Estimation

- James-Stein revealed that a global mean exists
- Shrinking samples toward a global mean improves accuracy of estimation
- This can be applied to covariance matrices
Shrinkage Estimation

What is the global mean?

- The true mean is unknown
- Many candidates exist for covariance
 - Identity matrix
 - Constant correlation matrix
 - Biased estimator (e.g. Barra)
Shrinkage Estimation

Shrinkage Intensity

- Use a single value or calculate per iteration
- Ledoit & Wolf propose optimal coefficient

\[
\alpha = \frac{k}{T} \\
k = \frac{\pi - \rho}{\gamma}
\]
Filtering Correlation Matrices

RMT reconstructs correlation matrix from the empirical correlation matrix by replacing all eigenvalues in noise part of spectrum with their mean.

Shrinkage estimation takes a weighted average between the sample covariance and a global mean using a calculated shrinkage constant.
Does It Work?

- How do you measure effectiveness?
- Again, two approaches
 - Kullback-Leibler distance
 - Out of sample portfolio returns
- Which will you believe?
Kullback-Leibler Distance

- KL distance measures the entropy between two probability density functions
- Not a true distance - but still useful!
 - Triangle inequality is not satisfied
 - Not symmetric
- Can measure information content and stability
Kullback-Leibler Distance

Theoretical Limit

![Graph showing the expected KL divergence vs Q for different N values.](image)
Kullback-Leibler Distance

Empirical Results

![Graph showing empirical results for Kullback-Leibler distance]

- **Expected KL divergence** vs. **Q**
- Different markers represent different methods:
 - Triangle: Limit
 - Circle: RMT
 - Square: Shrinkage
 - Diamond: Hybrid

The graph illustrates the empirical results for various values of Q, with error bars indicating variability.
Portfolio Performance

- **Minimum variance**

<table>
<thead>
<tr>
<th></th>
<th>sharpe.ratio</th>
<th>annual.return</th>
<th>annual.stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPX random subset (100 assets) – 175 day window, 125 dates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmt</td>
<td>0.1911074</td>
<td>0.04646651</td>
<td>0.2431435</td>
</tr>
<tr>
<td>shrink</td>
<td>-0.5547973</td>
<td>-0.12035726</td>
<td>0.2169392</td>
</tr>
<tr>
<td>shrink.m</td>
<td>0.6403425</td>
<td>0.23386712</td>
<td>0.3652219</td>
</tr>
<tr>
<td>hybrid</td>
<td>-0.1934593</td>
<td>-0.04509580</td>
<td>0.2331023</td>
</tr>
<tr>
<td>raw.sample</td>
<td>-0.5535997</td>
<td>-0.15960243</td>
<td>0.2882993</td>
</tr>
<tr>
<td>market</td>
<td>0.3956911</td>
<td>0.13857861</td>
<td>0.3502192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>sharpe.ratio</th>
<th>annual.return</th>
<th>annual.stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPX random subset (100 assets) – 125 day window, 175 dates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmt</td>
<td>-0.73633608</td>
<td>-0.20746138</td>
<td>0.2817482</td>
</tr>
<tr>
<td>shrink</td>
<td>-0.83450696</td>
<td>-0.24169547</td>
<td>0.2896267</td>
</tr>
<tr>
<td>shrink.m</td>
<td>0.09709427</td>
<td>0.04461285</td>
<td>0.4594797</td>
</tr>
<tr>
<td>hybrid</td>
<td>-0.69065240</td>
<td>-0.18980906</td>
<td>0.2748257</td>
</tr>
<tr>
<td>raw.sample</td>
<td>0.36170223</td>
<td>0.17826057</td>
<td>0.4928379</td>
</tr>
<tr>
<td>market</td>
<td>-0.06505888</td>
<td>-0.02908206</td>
<td>0.4470114</td>
</tr>
</tbody>
</table>
Portfolio Performance

Minimum variance optimization
Reconciliation

- Is there a connection between the theories?
- Examine eigenvalue distributions
- What about a hybrid approach?
- What about other eigenvalues?
Reconciliation
RMT replaces 'noisy' eigenvalues with average value
Reconciliation

Shrinkage scales eigenvalues towards a single value

Sample correlation matrix

Global mean

After shrinkage
Reconciliation

Eigenvalue distributions

- The eigenvalue of the global mean is in the noise part of the RMT spectrum!
- Both methods reduce noise by averaging out noisy eigenvalues
- Difference is in execution
- Hybrid approach has no benefit
References

- Laurent Laloux and Pierre Cizeau and Jean-Philippe Bouchaud and Marc Potters, Random matrix theory and financial correlations, 1999
End

- All images were generated by using Tawny (written by me)
- Download Tawny from CRAN
- https://nurometic.com
- b_rowe@ml.com or r@nurometic.com