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Scientific framework 

•  Analysis of costly numerical simulators 
– Crash-test simulators, thermo-hydraulic simulators or 

neutronic simulators for nuclear safety… 
– 1 run = several hours ! 

•  Some issues 
– Optimization (ex: minimization of the vehicle weight) 
– Risk assessment (ex: probability that the temperature 

exceeds a threshold ?) 
– Calibration 
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Scientific framework 

•  Some mathematical issues and tools 
– To approximate the simulator with a cheaper-to-run proxy 
    -> metamodeling: linear models, PolyMars, Splines, 

Gaussian processes (kriging), …  

– To choose design points in a relevant way 
    -> computer experiments: space-filling designs, quality 

criteria, optimal designs… 

– To use metamodels to solve problems 
    -> metamodel-aided optimization with EGO method 
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Some R packages about 
computer experiments 

•  BACCO [Bayes. Analysis of Comp. Code Output, R. Hankin] 
 At least: Bayesian modelling – Calibration – Prediction 

when a proxy (e.g. fast code) is available 

•  tgp [bayesian Treed Gaussian Process models, R. Gramacy] 
 At least: Bayesian modelling – For an irregular output – 

EGO method 

•  mlegp [Max. Lik. Estim. of Gauss. processes, G.M. Dancik] 
 At least: Univariate & multidimensional outputs – 

Constant or 1st order polynomial trend – Gaussian 
covariance - Stochastic simulators – Sensitivity analysis  
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The DiceKriging package 

•  DiceKriging (now split in DiceKriging & DiceOptim) 
– Univariate output 
– Trend is a linear model (including any transformation of inputs) 

– Max. Lik. Est. of Gaussian Processes with analytical 
gradients - BFGS and genetic algorithm (with rgenoud) 

– Deterministic or stochastic simulators 
– Several choices of covariance functions 
– EGO method, with analytical gradient (genetic algorithm) 
– Extension of EGO method for parallel computing 
– Prediction, validation, conditional simulations 
– Tested on several case studies (2D, 3D, … 30D) 



Kriging: a stochastic 
metamodeling method 

•  Kriging (Gaussian processes): 
 Y(x) = F(x)β + Z(x) 

 with 
– F(x)β a linear deterministic trend 
–  (Z(x)) a centered stationary Gaussian Process with 

covariance kernel CZ(x,y)=σ2 R(x-y) 

7 



Kriging: a stochastic 
metamodeling method 
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Some simulations with: 
-  a 2nd order poly. trend 
-  a Matérn covar. kernel 



Kriging: a stochastic 
metamodeling method 
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Some conditional 
simulations with: 
-  a 2nd order poly. trend 
-  a Matérn covar. kernel 



Kriging: a stochastic 
metamodeling method 
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More conditional 
simulations with: 
-  a 2nd order poly. trend 
-  a Matérn covar. Kernel 

In bold: 
-  Kriging mean 
 -> BLUP interpolator 
-  kriging variance 
 -> measure of uncertainty 



Kriging: a stochastic 
metamodeling method 
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Smoothness and choice 
of covariance kernels 



Kriging: a stochastic 
metamodeling method 
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Can also be used to deal with stochastic simulators 
Below: kriging estimation with noisy observations (constant budget) 



Kriging – What is implemented ? 

– Simulation: conditional or non-conditional simulations 
– Parameter estimation including nugget effect (if wished). 

By Maximum Likelihood, with analytical gradients. 
 -> not a Bayesian point of view 
 -> also suited for stochastic simulators  
– Prediction: simple & universal kriging formulae (mean, 

variance) 
– Validation: leave-one-out, k-fold cross validation (in 

DiceEval) 
– Covariance functions: (at now) Gaussian, Power-

Exponential, Matern 3/2, 5/2 and Exponential 
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Trustworthy software ? 

•  Some tests we conducted 
– Simulate and re-estimate parameters 
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Trustworthy software ? 

•  Some tests we conducted 
– Check the simple kriging formulae by simulation 
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Kriging-aided optimization 
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•  The Expected 
Improvement criterion 

EI(x) = E( [min(Y(X)) - Y(x)]+|Y(X)=Y) 



Kriging-aided optimization 
Some illustrations 
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Kriging-aided optimization 
Some illustrations 
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Kriging-aided optimization 
Some illustrations 
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Kriging-aided optimization 
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Kriging-aided optimization 
Some illustrations 
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Kriging-aided optimization 
Some illustrations 
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10 steps of EGO with a 
Gaussian kernel 



Kriging-aided optimization 
Some illustrations 
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Parallel EGO: 

for i in 1:10 do 
-  compute a new point with 
EGO step 
-  instead of running the 
simulator at this point, give the 
current minimum value 

The 10 points can be given to 
10 different computers 



Kriging-aided optimization 
Some illustrations 
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EGO.parallel.CL.nsteps


At each step 
- Parallel EGO  
-  Evaluate the simulator at the 
new points (using different 
computers) 
-  Re-estimate the kriging model 

Step 1 -> red points 
Step 2 -> violet points 
Step 3 -> green points 



Kriging-based optimization: 
what is implemented ? 

25 

– EI maximization with genetic algorithm genoud (package 
rgenoud), and analytical gradient (cst trend) 

– Sequential EI maximization (EGO method) 
• The simulator runs must be done sequentially 

– Multipoints EI maximization (EGO for parallel computing) 
• The simulator runs can be done with ≠ computers 
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