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Smoothing in 2 dimensions

I Have some geographical region and wish to find out
something about the biological population in it.

I Response is eg. animal distribution, wish to predict based
on (x , y) and other covariates eg. habitat, size, sex, etc.

I This problem is relatively easy if the domain is simple.



Smoothing over complex domains

I Smoothing of complex domains makes this a lot more
difficult.

I Problem of leakage.
I Euclidean distance doesn’t always make sense.
I Models need to incorporate information about the intrinsic

structure of the domain.
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Smoothing with penalties

I Objective function takes the form:

n∑
i=1

(zi − f (xi , yi ; θ))2 + λ

∫
Ω

Pf (x , y ; θ)dΩ

I f is the function you want to estimate, made up of some
combination of basis functions.

I P is some squared derivative penalty operator, usually
P = ( ∂2

∂x2 + ∂2

∂y2 )2.

I This can be generalized to an additive model or GAM.



Possible solutions to leakage problems

I FELSPLINE (Ramsay, (2002).)
I Domain morphing (Eilers, (2006).)
I Within-area distance (Wang and Ranalli, (2007).)
I Soap film smoothers (Wood et al, (2008).)



Why morph the domain?

I Takes into account within-area distance.
I Gives a known domain that is easier to smooth over.
I Potentially less computationally intensive.

However:

I Don’t maintain isotropy - distribution of points odd.
I Not clear what this does to the smoothness penalty.
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The Schwarz-Christoffel transform

I Take a polygon in some domain W and morph it to a new
domain W ∗.

I We then have a function for the mapping, ϕ(x , y).
I ϕ(x , y) is a conformal mapping.
I Do this by starting at the new domain and working back to

the polygon.
I Can draw a polygonal bounding box around some arbitrary

shape.

φ(x)

φ (x)-1

W
W*



The mapping
I Use a bounding box around the horseshoe.

1

4

8

5

2

3

6

7

I Morphing the horseshoe shape still gives a slightly odd
domain however, we are still doing better than before.



Horseshoe plots
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Soap film
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Problems

I Small:
I Implementation is Matlab+R. (YUCK!)

I BIG:
I Weird artifacts.
I Morphing of domain appears to cause features to be

smoothed over.
I Arbitrary selection of vertices.



A more realistic domain
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A more realistic domain - what’s happening?

I Weird “crowding” effect.
I Different with each vertex choice. All bad.



Outline

Smoothing over complex regions
Intro
Solutions

Schwarz-Christoffel transform

Multidimensional Scaling
Details
Simulation Results

Conclusions



Multidimensional scaling and within-area distances

I Idea: use MDS to to arrange points in the domain
according to their “within-domain distance.”

Scheme:

I First need to find the within-area distances.
I Perform MDS on the matrix of within-area distances.
I Smooth over the new points.



Multidimensional scaling refresher

I Double centre matrix of between point distances, D,
(subtract row and column means) then find DDT .

I Finds a configuration of points such that Euclidean
distance between points in new arrangement is
approximately the same as distance in the domain.

I Already implemented in R by cmdscale.
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Finding within-area distances
I Use a new algorithm to find the within area distances.
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Ramsay simulations
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A different domain
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Conclusions

I Seems that the S-C transform does not have much utility.
I MDS shows more promise, easier to transfer to higher

dimensions.
I MDS does not impose strict boundary conditions so

leakage still possible.
I Pushing the data into more dimensions might be useful to

separate points.
I After initial “transform” calculation, both methods only use

the same computational time as a thin plate regression
spline. (Soap is expensive.)
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