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Random Forests

>> ensembles of decision trees

>> diverse trees trying to solve the same problem

>> used frequently for:

>> prediction (knowledge of model less important)

>> feature selection (prediction less important)



RF interactions: prior art
>> online official RF manual

>> Lunetta, et al. (2004)

>> Bureau, et al. (2005)

>> pairwise permutation importance

>> Mao and Mao (2008)

>> Jiang, et al. (2009)

>> selection with RF Gini importance, conventional 
(LM-based) interaction test (up to 3-way)
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testing spl it  symmetry

>> independence of predictors A and B:

>> expect B as left daughter 50% of the time

>> expect B as right daughter 50% of the time

>> the prior (a beta density) is centered around 
0.5
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testing spl it  symmetry
>> we update the prior density parameters with the 

observed left/right daughter counts:

>> aposterior = aprior + ABleft

>> bposterior = bprior + ABright

>> ... and take the posterior/prior density ratio at 
0.5

>> this is the Bayes factor
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building a graph

>> using the Bayes factor from each pair of predictors, 
we calculate the posterior probability of symmetry 

>> i.e. that the true proportion is 0.5

>> we use a high prior probability of the hypothesis 
(e.g. ph = 0.999999) 



building a graph
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simulations

>> 1000 binary predictor variables, 200 observations

>> 3 - 4 predictors participate in true model

>> tested ability of the method to recover the true 
topology of the simulated model

>> recorded TP, FP while varying mtry and ntree
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real  world
>> Gabrb3

>> neurotransmitter 
receptor subunit

>> absence (or 
misexpression) yields 
autism-like behavior

>> what mechanisms 
influence Gabrb3 
expression?

Livet, et al. (2007)
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the context



the context
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conclusion

>> (a)symmetry of transitions between subsequently 
selected variables can give us clues about the 
degree of dependence between them

>> constructing a graph of these dependencies can 
illustrate the emergent dependency structure of the 
predictors in light of the response



forthcoming.. .

>> does this work for continuous and categorical 
predictors?

>> what about correlated predictors?

>> strategy for choosing optimal mtry and ntree?



RF is an example of a tool that is useful in doing analyses of 
scientific data. 

But the cleverest algorithms are no substitute for human 
intelligence and knowledge of the data in the problem. 

Take the output of random forests not as absolute truth, but as 
smart computer generated guesses that may be helpful in 
leading to a deeper understanding of the problem. 

                                           - Breiman & Cutler



Thanks!

jacob.michaelson@biotec.tu-dresden.de


