
Introduction The sets package The relations package Example Conclusion

Good Relations with R

David Meyer1 and Kurt Hornik2

1Department of Information Systems and Operations
2Department of Statistics and Mathematics

Wirtschaftsuniversität Wien

Rennes, useR! 2009

Introduction The sets package The relations package Example Conclusion

Motivation

Large scale benchmark analysis of performance of SVMs for
classi�cation and regression problems:

Meyer, Leisch & Hornik (2003), �The Support Vector Machine under
test�, Neurocomputing.

Results: ∼ 1,000 �gures . . . Analysis and presentation?

Hothorn, Leisch, Zeileis & Hornik (2005), �The design and analysis of
benchmark experiments�, Journal of Computational and Graphical
Statistics.

Hornik & Meyer (2007), �Deriving consensus rankings from benchmarking
experiments�, Proceedings of GfKl 2006.

In particular: how can the results on individual data sets be
aggregated? More generally: how can possibly partial preference
relations be aggregated?

Such issues are dealt with in social choice (going back to Borda
and Condorcet), group choice, multi criteria decision making, . . .

Introduction The sets package The relations package Example Conclusion

Consensus relations

Aggregation of individual relations amounts to determinining
so-called consensus relations, e.g., as a central relation R which
minimizes

Φ(R) =
B∑

b=1

wbd(Rb,R)

for a suitable dissimilarity measure d over a suitable class of
relations R (e.g., preferences or linear orders).

Applications abound: rank proposals, candidates, journals, web
pages, . . . , based on possibly incomplete individual rankings.

Introduction The sets package The relations package Example Conclusion

Relations

Given k sets of objects X1, . . . , Xk , a k-ary relation R on
D(R) = (X1, . . . ,Xk) is a subset G (R) of the Cartesian product
X1 × · · · × Xk .

So clearly,

D(R), the domain of R, is a k-tuple of sets

G (R), the graph of R, is a set of k-tuples

To provide a faithful computational model, we need tuples (where
R vectors can serve reasonably well) and sets.

Introduction The sets package The relations package Example Conclusion

Sets in base R

A set is a collection of distinct objects.
Base R provides some functionality for set computations (union,
intersect, setdiff, . . .), but no data structures, and e.g.

> union(list(1), list("1"))

[[1]]

[1] 1

[[2]]

[1] "1"

> intersect(list(1), list("1"))

[[1]]

[1] "1"

(Part of the �problem� is that match is used for comparing
elements.)

Introduction The sets package The relations package Example Conclusion

Package sets

Package sets provides data structures and basic operations for
ordinary sets, and generalizations such as fuzzy sets, multisets, and
fuzzy multisets (and tupels).

Operations include union, intersection, Cartesian product, etc.,
mostly also available as binary operators (|, &, *, etc.).

> A <- set(1)

> B <- set("1")

> A | B

{"1", 1}

> A & B

{}

Note that comparison is (by default) performed via identical.

Introduction The sets package The relations package Example Conclusion

Power sets and outer products

Power sets can be obtained via 2�.

Using set_outer, one can apply a function on all factorial
combinations of the elements of two sets.

> S <- set(1, 2, 3)

> PS <- 2^S

> set_outer(PS, PS, FUN = set_is_subset)

{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

{} TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

{1} FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE

{2} FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE

{3} FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE

{1, 2} FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

{1, 3} FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

{2, 3} FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

{1, 2, 3} FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

Introduction The sets package The relations package Example Conclusion

Fuzzy sets

In emphFuzzy sets, elements have degrees of membership.

Introduced by Zadeh (1965) as an extension of the classical notion
of a set, extending the basic set operations ∩,∪,¬ to the
min,max, 1− of the corresponding membership values.

Modern fuzzy set theory knows a variety of other extensions (�fuzzy
logics�) via t-norms, t-conorms, and negations.

Package sets supports the most popular fuzzy logic families
(drastic, product, Lukasiewicz, Fodor, Frank, Hamacher, . . .), and
also o�ers a simple mechanism for fuzzy rules and fuzzy inference.

Introduction The sets package The relations package Example Conclusion

Food for thought

Implementing sets of arbitrary elements of the R language is
surprisingly tricky.

Set elements should be �distinct�, but how should they be
compared? (Using ==, all.equal, identical, . . . ?) We provide
�customizable� sets (class cset) where this can be changed.

Elements of sets have no position: hence, positional subscripting is
disallowed. Iteration is used for accessing the elements, currently
(rather low-level) via lapply/as.list. (Work on a general
iteration mechanism for R has recently become available via the
iterators package.)

Introduction The sets package The relations package Example Conclusion

Food for thought

Set operations involve checking and removal of duplicate elements,
which can become costly. unique() is e�cient, but currently
ignores attributes . . . (Our implementation uses a two-pass
procedure, based on hashed environments and identical()).

Because sets can be nested (sets of sets of . . .), we also need to
enforce a canonical order of the elements. But sorting strings is
locale-dependent, and Unicode allows di�erent byte sequences for
the same glyphs. Recursive objects are sorted according to their
serialization.

Introduction The sets package The relations package Example Conclusion

Package relations

Package relations provides data structures and algorithms for
k-ary relations with arbitrary domains, featuring relational algebra,
predicate functions, and �tters for consensus relations.

Relations can be created via relation by giving the graph,
characteristic function or incidences and possibly the domain, or via
as.relation (e.g., unordered factors coerced to equivalence
relations; ordered factors and numeric vectors to order relations,
data frames taken as relation tables).

Characteristic function: membership function of the graph.

Incidences: array of memberships of the corresponding tuples in the
graph.

Introduction The sets package The relations package Example Conclusion

Under the hood

The R universe features many �relational� data structures (cluster
partitions correspond to equivalence relations; graphs, hypergraphs
and networks; . . .).

Relations are implemented as an S3 class which allows for a variety
of internal representations (�Containers�). Currently, by default, we
use a dense array representation of the incidences, and a more
compact representation for �rankings� (weak orders).

Computations on relations are based on high-level generic getters
for the basic constituents: relation_domain, relation_graph,
relation_charfun, relation_incidence.

Introduction The sets package The relations package Example Conclusion

Example

> R <- as.relation(c(1, 2))

> relation_domain(R)

Relation domain:

A pair with elements:

{1, 2}

{1, 2}

> relation_graph(R)

Relation graph:

A set with pairs:

(1, 1)

(1, 2)

(2, 2)

> relation_incidence(R)

Incidences:

1 2

1 1 1

2 0 1

Introduction The sets package The relations package Example Conclusion

Example

> S <- set("Peter", "Paul", "Mary")

> R <- relation(incidence = set_outer(2^S, `<=`))

> R

A binary relation of size 8 x 8.

> plot(R)

Partial Order

{Mary, Paul, Peter}

{Mary, Paul} {Mary, Peter}

{Mary}

{Paul, Peter}

{Paul} {Peter}

{}

Introduction The sets package The relations package Example Conclusion

Endorelations and predicates

Endorelations are binary relations with domain D = (X ,X).
Such relations can be re�exive, symmetric, transitive,

Important combinations of the basic properties include

equivalance re�exive, symmetric, and transitive

preference complete, re�exive, and transitive (also known as
�weak order�)

linear order antisymmetric preference

These properties can be tested for using relation_is_foo

predicates.
The summary method for relations applies all available predicates.

Introduction The sets package The relations package Example Conclusion

Basic operations

Rich collection of basic operations, including

Complement and dual

Comparisons (using the natural ordering), meet and join

Composition, union, intersection, di�erence

Transitive reduction and closure, covering relation

Plotting (via Rgraphviz) for certain endorelations (using
Hasse diagrams)

Also implements relational algebra of Codd (1970) using convenient
binary operators (e.g., inner/outer joins, projection, selection, . . .).

Introduction The sets package The relations package Example Conclusion

Ensembles

Relation ensembles are collections of relations
Rb = (Db,Gb), 1 ≤ b ≤ B with identical domains, i.e.,
D1 = · · · = DB .

Implemented as suitably classed lists of relation objects, making it
possible to use lapply for computations on the individual relations
in the ensemble.

Available methods for relation ensembles include those for
subscripting, c, t, rep, and print.

Introduction The sets package The relations package Example Conclusion

Dissimilarities

Several methods for computing dissimilarities between (ensembles
of) relations, with default the symmetric di�erence distance (the
cardinality of the symmetric di�erence of two relations, i.e., the
number of tuples contained in exactly one of two relations).

Characterizable as the least element moves distance in the lattice of
relations on the same domain under the natural (set inclusion of
the graphs) order. For preference relations: Kemeny-Snell distance.
In addition, Cook-Kress and Cook-Kress-Seiford distances.

Allows for dissimilarity based analysis of relation ensembles
(clustering, scaling, . . .).

Introduction The sets package The relations package Example Conclusion

Consensus relations

Several methods for obtaining consensus relations, including Borda,
Condorcet and Copeland methods, but most importantly for �nding
central relations minimizing weighted average symmetric distance

Φ(R) =
B∑

b=1

wbd(Rb,R)

over suitable �families� of relation (e.g., equivalence, preferences
and linear orders).

Accomplished by reformulating the consensus problem as a binary
linear program∑

i ,j

cij(w1, . . . ,wB ,R1, . . . ,RB)xij → max

for the 0/1 incidences xij of the consensus relation.

Introduction The sets package The relations package Example Conclusion

Consensus relations

Allows using solvers from packages Rcplex, Rglpk, Rsymphony and
lpSolve.

(Encapsulates creation and solution of MILPs/MIQPs, to be spun
o� into an optimization infrastructure package eventually.)

Always possible to �nd all solutions via poor person's branch and
cut (only lp_solve and cplex provide some solver support for
this).

For equivalences and preferences, one can specify the desired
number of equivalence classes. For this, the consensus problem is
reformulated as a binary quadratic program.

Introduction The sets package The relations package Example Conclusion

Example: SVM Benchmarking

Results for benchmarking 17 classi�cation methods on 21 data sets:
relation ensemble of length 21 with encoding

I (Rb)i ,j =


1 if method i did not signi�cantly outperform

method j on data set b

0 otherwise

Load the data set:
> data("SVM_Benchmarking_Classification")

> SVM_Benchmarking_Classification

An ensemble of 21 relations of size 17 x 17.

Fit all consensus linear orders and preferences:
> cens_L <- relation_consensus(SVM_Benchmarking_Classification,

+ "SD/L", all = TRUE)

> cens_P <- relation_consensus(SVM_Benchmarking_Classification,

+ "SD/P", all = TRUE)

Introduction The sets package The relations package Example Conclusion

Consensus Relations: Linear Orders

> plot(c(cens_L, min(cens_L)), layout = c(1, 5))

Linear Order

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Linear Order

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Linear Order

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Linear Order

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Partial Order

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Introduction The sets package The relations package Example Conclusion

Consensus Relations: Weak Orders

> plot(cens_W, layout = c(1, 4))

Weak Order

bagging dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinom

nnet

qda

randomForest

rpart

svm

Weak Order

bagging dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinom

nnet

qda

randomForest

rpart

svm

Weak Order

bagging dbagging

fda.bruto

fda.mars glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinomnnet

qda

randomForest

rpart

svm

Weak Order

bagging dbagging

fda.bruto

fda.mars glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinomnnet

qda

randomForest

rpart

svm

Introduction The sets package The relations package Example Conclusion

Extensions

The package also o�ers . . .

Fuzzy relations

Prototype-based partitioning (�clustering�) of relation
ensembles

Social choice (e.g., determine the/all �k-winners�):
> relation_choice(SVM_Benchmarking_Classification, k = 4)

Using the GLPK callable library version 4.37

{"bagging", "dbagging", "randomForest", "svm"}

and much more.

Introduction The sets package The relations package Example Conclusion

Coordinates

David Meyer, Kurt Hornik
Wirtschaftsuniversität Wien
Augasse 2�6, A-1090 Wien
E-mail: Firstname.Lastname@wu.ac.at

WWW: http://wi.wu.ac.at/~meyer/

http://statmath.wu.ac.at/~hornik/

http://wi.wu.ac.at/~meyer/
http://statmath.wu.ac.at/~hornik/

	Introduction
	The sets package
	The relations package
	Example
	Conclusion

