A suite of R packages for the analysis of DNA copy number microarray experiments Application in cancerology

Philippe Hupé^{1,2}

¹UMR144 Institut Curie, CNRS

²U900 Institut Curie, INSERM, Mines Paris Tech

The R User Conference 2009
Rennes

Outline

Biological / clinical context

R packages description

End-user interfaces / automatic workflow

Outline

Biological / clinical context

- R packages description
- 3 End-user interfaces / automatic workflow

DNA copy number alteration in tumour

tumoral cell

normal cell

Chaos in cancer cells

gain, loss or amplification of chromosomes or pieces of chromosomes.

Molecular profiling of tumours

- Identification of DNA copy number alterations in each patient
- Is the pattern of alterations is related to patient outcome (e.g. relapse, metastasis)?

DNA copy number alteration in tumour

tumoral cell

normal cell

Chaos in cancer cells

gain, loss or amplification of chromosomes or pieces of chromosomes.

Molecular profiling of tumours

- Identification of DNA copy number alterations in each patient
- Is the pattern of alterations is related to patient outcome (e.g. relapse, metastasis)?

High-throughput quantification of DNA copy number

Microarray technology

- DNA copy number for 5×10^3 up to 2×10^6 genomic loci
- Probes spotted on a glass array (i.e. the microarray)

microarray

Colour study: squares with concentric circles

Wassily Kandinsky, 1913

High-throughput quantification of DNA copy number

Microarray technology

- \bullet DNA copy number for 5×10^3 up to 2×10^6 genomic loci
- Probes spotted on a glass array (i.e. the microarray)

DNA copy number profile of the tumour

Karyotype of the tumour

High-throughput quantification of DNA copy number

Microarray technology

- DNA copy number for 5×10^3 up to 2×10^6 genomic loci
- Probes spotted on a glass array (i.e. the microarray)

DNA copy number profile of the tumour

Karyotype of the tumour

Huge amount of data ($\sim 2 \times 10^6$ variables for each patient)

Need for biostatistical algorithms and automatic bioinformatic pipelines

Biostatistical workflow

R packages available from www.bioconductor.org

- MANOR: spatial normalisation
- GLAD: extraction of the biological information
- ITALICS: normalisation + extraction of the biological information

Outline

Biological / clinical context

- R packages description
- 3 End-user interfaces / automatic workflow

- Abnormal Log-Ratio in the corner
- Spatial trend estimation by 2D-LOESS
- Spatial segmentation
- Bias area are removed
 - Spots are outliers in the genomic profile

- Abnormal Log-Ratio in the corner
- Spatial trend estimation by 2D-LOESS
- Spatial segmentation
- Bias area are removed
- Spots are outliers in the genomic profile

- Abnormal Log-Ratio in the corner
- Spatial trend estimation by 2D-LOESS
- Spatial segmentation
- Bias area are removed
 - Spots are outliers in the genomic profile

- Abnormal Log-Ratio in the corner
- Spatial trend estimation by 2D-LOESS
- Spatial segmentation
- Bias area are removed
 - Spots are outliers in the genomic profile

- Abnormal Log-Ratio in the corner
- Spatial trend estimation by 2D-LOESS
- Spatial segmentation
- Bias area are removed
- Spots are outliers in the genomic profile

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

It works with BAC array, cDNA array, oligonucleotide array (Affymetrix, Agilent, Nimblegen, Illumina)

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

It works with BAC array, cDNA array, oligonucleotide array (Affymetrix, Agilent, Nimblegen, Illumina)

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

It works with BAC array, cDNA array, oligonucleotide array (Affymetrix Agilent, Nimblegen, Illumina)

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

t works with BAC array, cDNA array, oligonucleotide array (Affymetrix Agilent, Nimblegen, Illumina)

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

It works with BAC array, cDNA array, oligonucleotide array (Affymetrix Agilent, Nimblegen, Illumina)

Hupé et al., Bioinformatics, 2004

Profile segmentation

 The GLAD algorithm aims at identifying chromosomal regions with identical DNA copy number.

- Log-Ratio profile
- Smoothing line estimation
- Breakpoint detection
- Status assignment
- Outliers detection

It works with BAC array, cDNA array, oligonucleotide array (Affymetrix, Agilent, Nimblegen, Illumina)

ITALICS: ITerative and Alternative normaLization of Copy number Snp array Rigaill et al., Bioinformatics, 2008

Devoted to the analysis of Affymetrix Genome-Wide SNP chip

- the specificities of the affymetrix technology are taken into account in the algorithm
- the signal to noise ratio is better
- the breakpoint location is more accurate

Spatial artifact

1600 aberrant values

Outline

Biological / clinical context

R packages description

End-user interfaces / automatic workflow

Biologist / Clinician end-users

- need to visualise their data
- biological interpretation of their data
- not necessarly familiar with R programing language
- no biostatistician/bioinformatician in their lab
- need easy-to-use interfaces

Diffusion of statistical methods within the scientific community If we want our statistical methods to be used, we need to package them properly.

Biologist / Clinician end-users

- need to visualise their data
- biological interpretation of their data
- not necessarly familiar with R programing language
- no biostatistician/bioinformatician in their lab
- need easy-to-use interfaces

Diffusion of statistical methods within the scientific community If we want our statistical methods to be used, we need to package them properly.

VAMP: a software to visualise and analyse data

La Rosa et al., Bioinformatics, 2006

http://bioinfo.curie.fr/vamp

Our tools fo DNA copy number experiments

- R packages (MANOR, GLAD, ITALICS) for biostatistical analysis
- VAMP java software for visualisation (and analysis)

Need for an integrated environment

CAPweb is a web interface which allows the use of all the previous tools.

Our tools fo DNA copy number experiments

- R packages (MANOR, GLAD, ITALICS) for biostatistical analysis
- VAMP java software for visualisation (and analysis)

Need for an integrated environment

CAPweb is a web interface which allows the use of all the previous tools.

http://bioinfo.curie.fr/capweb

- user registration
- project management
- Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

http://bioinfo.curie.fr/capweb

- user registration
- project management
- input file: Genepix, spot, Imagen, Feature Extraction, CEL
- normalisation: MANOR, ITALICS
- breakpoint detection: GLAD
- summary report
- visualise the data with VAMP
- array technology: BAC, cDNA, Agilent, Affymetrix (100K, 500K) (Illumina, Nimblegen soon)
- integration of clinical data
- integration of mRNA data

Client / Server Architecture

Our R packages are used calling CGI from any web browser

Recent evolutions and perspectives

Recent changes

- Possibility to use HaarSeg algorithm (Ben-Yaacov and Eldar, Bioinformatics, 2008) in GLAD → 2 millions genomic profiles can be analysed within 1 minute
- Use C/C++ in order to reduce computing time

On-going work

- Improvement of ITALICS in order to analyse Affymetrix Genome Wide SNP 6.0
- Extension to Next-Generation Sequencing technologies (Terabytes of data!!)

aroma.affymetrix (Bengtsson et al.) R package offers many functionalities for affymetrix data analysis

Recent evolutions and perspectives

Recent changes

- Possibility to use HaarSeg algorithm (Ben-Yaacov and Eldar, Bioinformatics, 2008) in GLAD → 2 millions genomic profiles can be analysed within 1 minute
- Use C/C++ in order to reduce computing time

On-going work

- Improvement of ITALICS in order to analyse Affymetrix Genome Wide SNP 6.0
- Extension to Next-Generation Sequencing technologies (Terabytes of data!!)

aroma.affymetrix (Bengtsson et al.) R package offers many functionalities for affymetrix data analysis

Recent evolutions and perspectives

Recent changes

- Possibility to use HaarSeg algorithm (Ben-Yaacov and Eldar, Bioinformatics, 2008) in GLAD → 2 millions genomic profiles can be analysed within 1 minute
- Use C/C++ in order to reduce computing time

On-going work

- Improvement of ITALICS in order to analyse Affymetrix Genome Wide SNP 6.0
- Extension to Next-Generation Sequencing technologies (Terabytes of data!!)

aroma.affymetrix (Bengtsson et al.) R package offers many functionalities for affymetrix data analysis

Acknowledgements

Institut Curie / Bioinformatics U900

THANKS

