
CoxFlexBoost:
Fitting Structured Survival Models

Benjamin Hofner 1

Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE)

Friedrich-Alexander-Universität Erlangen-Nürnberg

joint work with Torsten Hothorn and Thomas Kneib
Institut für Statistik

Ludwig-Maximilians-Universität München

useR! 2009 - Rennes

1benjamin.hofner@imbe.med.uni-erlangen.de

Introduction

Data Example -
Intensive Care Patients with Severe Sepsis

Response: 90-day survival
Predictors: 14 categorical predictors (sex, fungal infection (y/n), . . .)

6 continuous predictors (age, Apache II Score, . . .)

Previous studies showed the presence of
linear, non-linear and time-varying effects.

Aims:

flexible survival model for patients suffering from severe sepsis

identify prognostic factors (at appropriate complexity)

Further Details of the Data-Set:

Origin: Department of Surgery, Campus Großhadern, LMU Munich
Period of observation: March 1993 – February 2005 (12 years)
N: 462 septic patients (180 observations right-censored)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 2

Introduction

Structured Survival Models

Cox PH model: λi (t) = λ(t, xi) = λ0(t) exp(x′iβ)

Generalization: Structured Survival Models

λi (t) = exp(ηi (t))

with additive predictor

ηi (t) =
L∑

l=1

fl(xi(t)),

Generic representation of covariate effects fl(xi)
a) linear effects: fl(xi (t)) = fl,linear(x̃i) = x̃iβ
b) smooth effects: fl(xi (t)) = fl,smooth(x̃i)
c) time-varying effects: fl(xi (t)) = fl,smooth(t) · x̃i (or fl(xi (t)) = tβ · x̃i)

where x̃i is a covariate from xi (t).

Note:

c) includes log-baseline (x̃i ≡ 1)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 3

Introduction Estimation

Estimation

Flexible terms fl ,smooth(·) can be represented using P-splines (Eilers &

Marx, 1996)

This leads to:

Penalized Likelihood Criterion:

Lpen(β) =
n∑

i=1

[
δiηi (ti)−

∫ ti

0
exp(ηi (t)) dt

]
−

L∑
l=0

penl(βl)

NB: this is the full log-likelihood

Problem:

Estimation and in particular model choice

ti observed survival time

δi indicator for non-censoring

penl(βl) P-spline penalty for smooth effects

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 4

CoxFlexBoost

CoxFlexBoost

Aim:

Maximization of the log-likelihood with different modeling alternatives

We use:

Iterative algorithm called Likelihood-based Boosting with
component-wise base-learners

Therefore:

Use one base-learner gj(·) for each covariate
(or each model component) [j ∈ {1, . . . , J}]

⇒Component-wise boosting as is used a means of estimation with
intrinsic variable selection and model choice (as we will show now).

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 5

CoxFlexBoost

CoxFlexBoost

Aim:

Maximization of the log-likelihood with different modeling alternatives

We use:

Iterative algorithm called Likelihood-based Boosting with
component-wise base-learners

Therefore:

Use one base-learner gj(·) for each covariate
(or each model component) [j ∈ {1, . . . , J}]

⇒Component-wise boosting as is used a means of estimation with
intrinsic variable selection and model choice (as we will show now).

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 5

CoxFlexBoost

CoxFlexBoost

Aim:

Maximization of the log-likelihood with different modeling alternatives

We use:

Iterative algorithm called Likelihood-based Boosting with
component-wise base-learners

Therefore:

Use one base-learner gj(·) for each covariate
(or each model component) [j ∈ {1, . . . , J}]

⇒Component-wise boosting as is used a means of estimation with
intrinsic variable selection and model choice (as we will show now).

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 5

CoxFlexBoost

Some Details on CoxFlexBoost

After some initializations, in each boosting iteration m (until m = mstop):

1.) All base-learners gj(·) (i.e., modeling possibility) are fitted separately
(based on penalized MLE).

2.) Choose best fitting base-learner ĝj∗ (i.e., the base-learner that
maximizes the unpenalized LH)

3.) Add . . .

. . . fraction ν of the fit (ĝj∗) to the model

. . . fraction ν of the parameter estimate (βj∗) to the estimation

(ν = 0.1 in our case)

What happens then?

(parameters of) previously selected base-learners are treated as a constant
in the next iteration

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 6

CoxFlexBoost Variable Selection and Model Choice

Variable Selection and Model Choice

. . . is achieved by

selection of base-learner, i.e., component-wise boosting (steps 1.) & 2.))

and

early stopping,
i.e., estimate optimal stopping iteration m̂stop,opt via cross validation,
bootstrap, . . .

For Variable selection (without model choice):
Define one base-learner per covariate
e.g. flexible base-learner with 4 df

For Variable selection and model choice:
Define one base-learner per modeling possibility

But the flexibility must be comparable!
Otherwise: more flexible base-learners are preferred

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 7

CoxFlexBoost Degrees of Freedom

Specify Flexibility by Degrees of Freedom

Specifying the flexibility via df is more intuitive than
specifying it via the smoothing parameter κ.

df can be used to make smooth effects comparable to other modeling
components (e.g., linear effects).

Use initial d̃f j (
e.g .
= 4) and solve

df(κj)− d̃f j
!

= 0

for κj , where

df(κj) = trace
[Fisher matrix︷︸︸︷

F
[0]
j (F

[0]
j + κjKj︸ ︷︷ ︸

penalized Fisher matrix

)−1
]

(Gray, 1992).

Problem 1: Not constant over the (boosting) iterations

But simulation studies showed: No big deviation from the initial d̃f j

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 8

CoxFlexBoost Degrees of Freedom

Specify Flexibility by Degrees of Freedom

Specifying the flexibility via df is more intuitive than
specifying it via the smoothing parameter κ.

df can be used to make smooth effects comparable to other modeling
components (e.g., linear effects).

Use initial d̃f j (
e.g .
= 4) and solve

df(κj)− d̃f j
!

= 0

for κj , where

df(κj) = trace
[Fisher matrix︷︸︸︷

F
[0]
j (F

[0]
j + κjKj︸ ︷︷ ︸

penalized Fisher matrix

)−1
]

(Gray, 1992).

Problem 1: Not constant over the (boosting) iterations

But simulation studies showed: No big deviation from the initial d̃f j

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 8

CoxFlexBoost Degrees of Freedom

Problem 2

For P-splines with higher order differences (d ≥ 2): df > 1 (κ→∞)

Polynomial of order d − 1 remains unpenalized

Solution:

Decomposition for differences of order d = 2
(based on Kneib, Hothorn, & Tutz, 2009)

fsmooth(x)

·t

= β0

·t

+ β1x

·t

︸ ︷︷ ︸
unpenalized, parametric part

+ fsmooth,centered(x)

·t

︸ ︷︷ ︸
deviation from polynomial

Add unpenalized part as separate, parametric base-learners

Assign df = 1 to the centered effect (and add as P-spline base-learner)
Analogously for time-varying effects

Technical realization (see Fahrmeir, Kneib, & Lang, 2004):

decomposing the vector of regression coefficients β into (eβunpen,
eβpen) utilizing a

spectral decomposition of the penalty matrix

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 9

CoxFlexBoost Degrees of Freedom

Problem 2

For P-splines with higher order differences (d ≥ 2): df > 1 (κ→∞)

Polynomial of order d − 1 remains unpenalized

Solution:

Decomposition for differences of order d = 2
(based on Kneib et al., 2009)

fsmooth(x)·t = β0·t + β1x ·t︸ ︷︷ ︸
unpenalized, parametric part

+ fsmooth,centered(x)·t︸ ︷︷ ︸
deviation from polynomial

Add unpenalized part as separate, parametric base-learners

Assign df = 1 to the centered effect (and add as P-spline base-learner)
Analogously for time-varying effects

Technical realization (see Fahrmeir et al., 2004):

decomposing the vector of regression coefficients β into (eβunpen,
eβpen) utilizing a

spectral decomposition of the penalty matrix

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 9

CoxFlexBoost Results

Simulation Results (in short)
Properties of CoxFlexBoost

Good variable selection strategy

Good model choice strategy if only linear and smooth effects are used

Selection bias in favor of time-varying base-learners (if present)
⇒ standardizing time could be a solution

Estimates are better if decomposition for model choice is used
(compared to one flexible base-learner with 4 df)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 10

Package: CoxFlexBoost

Using CoxFlexBoost - Intro in a Nutshell

A (very) simple example:

model choice for sampled data with λ = exp(0.7 · x1 + x2
2)

cfboost() is the main function

bols() represents ordinary least squares base-learners

bbs() represents penalized B-spline base-learners (i.e., P-splines)

weights are used to specify out-of-bag sample (weights[i] = 0)

R> model <- cfboost(Surv(time, event) ~
bols(x1) + bbs(x1, df=1, center=TRUE)

+ bols(x2) + bbs(x2, df=1, center=TRUE)
+ bols(x3) + bbs(x3, df=1, center=TRUE),
control = boost_control(mstop = 100, risk="oobag"),
data = data, weights = weights)

R> model_mstop <- model[mstop(model)]

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 11

Package: CoxFlexBoost

R> summary(model_mstop)
(...)
Number of selections in 44 iterations:

bbs(x2): 24
bols(x1): 18
bbs(x3): 2
bbs(x1): 0
bols(x2): 0
bols(x3): 0

Further base-learners:

linear time-varying effects t β · x1:
bolsTime(x = time, z = x1)

smooth time-varying effects fsmooth(t) · x1 with decomposition:
bbsTime(x = time, z = x1, df = 4, center = TRUE)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 12

Package: CoxFlexBoost Application

Application - Intensive Care Patients with Severe Sepsis (I)
We fitted a component-wise boosting model with P-spline decomposition
to achieve model choice and variable selection to the severe sepsis data.

CoxFlexBoost

selected 10 out of 20 variables + baseline hazard

used 15 different base-learners (out of 68)

⇒ sparse model

Out of 14 categorical covariates:
7 were selected

2 were selected as linear effects
4 were selected as time-varying effects
1 was selected as linear and time-varying effect

Out of 6 continuous covariates:
3 were selected

1 with linear effect
2 with linear and time-varying effects

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 13

Package: CoxFlexBoost Application

Application - Intensive Care Patients with Severe Sepsis (I)
We fitted a component-wise boosting model with P-spline decomposition
to achieve model choice and variable selection to the severe sepsis data.

CoxFlexBoost

selected 10 out of 20 variables + baseline hazard

used 15 different base-learners (out of 68)

⇒ sparse model

Out of 14 categorical covariates:
7 were selected

2 were selected as linear effects
4 were selected as time-varying effects
1 was selected as linear and time-varying effect

Out of 6 continuous covariates:
3 were selected

1 with linear effect
2 with linear and time-varying effects

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 13

Package: CoxFlexBoost Application

Application - Intensive Care Patients with Severe Sepsis (I)
We fitted a component-wise boosting model with P-spline decomposition
to achieve model choice and variable selection to the severe sepsis data.

CoxFlexBoost

selected 10 out of 20 variables + baseline hazard

used 15 different base-learners (out of 68)

⇒ sparse model

Out of 14 categorical covariates:
7 were selected

2 were selected as linear effects
4 were selected as time-varying effects
1 was selected as linear and time-varying effect

Out of 6 continuous covariates:
3 were selected

1 with linear effect
2 with linear and time-varying effects

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 13

Package: CoxFlexBoost Application

Application - Intensive Care Patients with Severe Sepsis (II)

Time-varying Effect for Categorical Variables:

0 20 40 60 80

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

time

lo
g

(h
az

ar
d

ra
te

)

none
fungal infection
emergency admission
catecholamine therapy
palliative operation
sex

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 14

Summary / Outlook

Messages “To Go”

R-package CoxFlexBoost available on R-forge (Hofner, 2008)

CoxFlexBoost . . .

. . . allows for variable selection and model choice.

. . . allows for flexible modeling

flexible, non-linear effects
time-varying effects (i.e., non-proportional hazards)

. . . provides convenient functions to manipulate and show results
(summary(), plot(), subset(), . . .)

. . . provides built-in function cv() to compute m̂stop,opt via CV or
bootstrap with possible usage of R-package multicore
(Urbanek, 2009).

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 15

References

References

Hofner, B. (2008). CoxFlexBoost: Boosting Flexible Cox Models (with
Time-Varying Effects). (R package version 0.6-0)

Hofner, B., Hothorn, T., & Kneib, T. (2008). Variable selection and
model choice in structured survival models (Tech. Rep. No. 43).
Department of Statistics, Ludwig-Maximilans-Universität
München.

Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11, 89–121.

Fahrmeir, L., Kneib, T., & Lang, S. (2004). Penalized structured additive
regression: A Bayesian perspective. Statistica Sinica, 14, 731–761.

Gray, R. J. (1992). Flexible methods for analyzing survival data using splines,
with application to breast cancer prognosis. Journal of the American
Statistical Association, 87, 942–951.

Kneib, T., Hothorn, T., & Tutz, G. (2009). Variable selection and model
choice in geoadditive regression models. Biometrics, 65, 626–634.

Urbanek, S. (2009). multicore: Parallel processing of R code on machines with
multiple cores or cpus. (R package version 0.1-3)

Find out more: http://benjaminhofner.de/

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 16

http://benjaminhofner.de/

CoxFlexBoost Algorithm

CoxFlexBoost Algorithm

(i) Initialization: Iteration index m := 0.

Function estimates (for all j ∈ {1, . . . , J}):

f̂
[0]
j (·) ≡ 0

Offset (MLE for constant log hazard):

η̂[0](·) ≡ log

(∑n
i=1 δi∑n
i=1 ti

)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 17

CoxFlexBoost Algorithm

(ii) Estimation: m := m + 1.
Fit all (linear/P-spline) base-learners separately

ĝj = gj(· ; β̂j), ∀j ∈ {1, . . . , J},
by penalized MLE.

Details on pMLE

β̂j = arg max
β
L[m]

j,pen(β)

with the penalized log-likelihood (analogously as above)

L[m]
j,pen(β) =

nX
i=1

»
δi · (η̂[m−1]

i + gj(xi (ti); β))

−
Z ti

0

exp
n
η̂

[m−1]
i (̃t) + gj(xi (̃t); β)

o
d t̃

–
− penj(β),

with the additive predictor ηi split

into the estimate from previous iteration η̂
[m−1]
i

and the current base-learner gj(·; β)

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 18

CoxFlexBoost Algorithm

(iii) Selection: Choose base-learner ĝj∗ with

j∗ = arg max
j∈{1,...,J}

L[m]
j ,unpen(β̂j)

(iv) Update:
Function estimates (for all j ∈ {1, . . . , J}):

f̂
[m]
j =

{
f̂

[m−1]
j + ν · ĝj j = j∗

f̂
[m−1]
j j 6= j∗

Additive predictor (= fit):

η̂[m] = η̂[m−1] + ν · ĝj∗

with step-length ν ∈ (0, 1] (here: ν = 0.1)

(v) Stopping rule: Continue iterating steps (ii) to (iv) until m = mstop

IMBE Erlangen-Nürnberg CoxFlexBoost: Fitting Structured Survival Models 19

	Introduction
	Estimation

	CoxFlexBoost
	Variable Selection and Model Choice
	Degrees of Freedom
	Results

	Package: CoxFlexBoost
	Application

	Summary / Outlook
	References
	References
	Appendix
	CoxFlexBoost Algorithm

