Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

Axel Gandy

Department of Mathematics
Imperial College London
a.gandy@imperial.ac.uk

useR! 2009, Rennes
July 8-10, 2009
Introduction

- Test statistic T, reject for large values.
- Observation: t.
- p-value:
 \[p = P(T \geq t) \]

Often not available in closed form.

- Monte Carlo Test:
 \[\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} I(T_i \geq t), \]
 where T, T_1, \ldots, T_n i.i.d.

- Examples:
 - Bootstrap,
 - Permutation tests.

- Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α.
Introduction

- Test statistic T, reject for large values.
- Observation: t.
- p-value:
 \[p = P(T \geq t) \]

Often not available in closed form.
- Monte Carlo Test:
 \[\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} I(T_i \geq t), \]
 where T, T_1, \ldots, T_n i.i.d.
- Examples:
 - Bootstrap,
 - Permutation tests.
- Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α.
Introduction

- Test statistic T, reject for large values.
- Observation: t.
- p-value:
 \[p = P(T \geq t) \]

Often not available in closed form.
- Monte Carlo Test:
 \[\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} I(T_i \geq t), \]
 where T, T_1, \ldots, T_n i.i.d.
- Examples:
 - Bootstrap,
 - Permutation tests.
- Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α.
Introduction

- Test statistic T, reject for large values.
- Observation: t.
- p-value:

 \[p = P(T \geq t) \]

 Often not available in closed form.

- Monte Carlo Test:

 \[\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} I(T_i \geq t), \]

 where T, T_1, \ldots, T_n i.i.d.

- Examples:
 - Bootstrap,
 - Permutation tests.

- Goal: Estimate p using few X_i

 Mainly interested in deciding if $p \leq \alpha$ for some α.
Sequential approaches based on $S_n = \sum_{i=1}^{n} X_i$

- Stop once $S_n \geq U_n$ or $S_n \leq L_n$
- τ: hitting time
- Compute \hat{p} based on S_{τ} and τ.
- Hit B_U: decide $p > \alpha$,
- Hit B_L: decide $p \leq \alpha$,
Sequential approaches based on $S_n = \sum_{i=1}^{n} X_i$

- Stop once $S_n \geq U_n$ or $S_n \leq L_n$
- τ: hitting time
- Compute \hat{p} based on S_τ and τ
- Hit B_U: decide $p > \alpha$
- Hit B_L: decide $p \leq \alpha$
Sequential approaches based on $S_n = \sum_{i=1}^{n} X_i$

- Stop once $S_n \geq U_n$ or $S_n \leq L_n$
- τ: hitting time
- Compute \hat{p} based on S_{τ} and τ.
- Hit B_U: decide $p > \alpha$,
- Hit B_L: decide $p \leq \alpha$,

\[S_n = \sum_{i=1}^{n} X_i \]
Previous Approaches

- Besag & Clifford (1991):

- (Truncated) Sequential Probability Ratio Test, Fay et al. (2007)

- R-package MChtest.
What do we really want?

Is \(p \leq \alpha \)?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

\[
RR_p(\hat{p}) \equiv \begin{cases}
P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\
P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha. \
\end{cases}
\]

Want:

\[
\sup_{p \in [0,1]} RR_p(\hat{p}) \leq \epsilon
\]

for some (small) \(\epsilon > 0 \).

For Besag & Clifford (1991), SPRT: \(\sup_p RR_p \geq 0.5 \)
What do we really want?

Is \(p \leq \alpha \)?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

\[
RR_p(\hat{p}) \equiv \begin{cases}
 P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\
 P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha.
\end{cases}
\]

Want:

\[
\sup_{p \in [0,1]} RR_p(\hat{p}) \leq \epsilon
\]

for some (small) \(\epsilon > 0 \).

For Besag & Clifford (1991), SPRT: \(\sup_p RR_p \geq 0.5 \)
What do we really want?

Is \(p \leq \alpha \)?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

\[
RR_p(\hat{p}) \equiv \begin{cases}
P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\
P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha.
\end{cases}
\]

Want:

\[
\sup_{\hat{p}} RR_p(\hat{p}) \leq \epsilon
\]

for some (small) \(\epsilon > 0 \).

For Besag & Clifford (1991), SPRT: \(\sup_p RR_p \geq 0.5 \).
What do we really want?

Is $p \leq \alpha$?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_p(\hat{p}) \equiv \begin{cases} P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

$$\sup_{p \in [0,1]} RR_p(\hat{p}) \leq \epsilon$$

for some (small) $\epsilon > 0$.

For Besag & Clifford (1991), SPRT: $\sup_p RR_P \geq 0.5$
What do we really want?

Is $p \leq \alpha$?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_p(\hat{p}) \equiv \begin{cases}
P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\
P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha.
\end{cases}$$

Want:

$$\sup_{p \in [0,1]} RR_p(\hat{p}) \leq \epsilon$$

for some (small) $\epsilon > 0$.

For Besag & Clifford (1991), SPRT: $\sup_p RR_p \geq 0.5$
What do we really want?

Is $p \leq \alpha$?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_p(\hat{p}) \equiv \begin{cases}
P_p(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\
P_p(\hat{p} \leq \alpha) & \text{if } p > \alpha.
\end{cases}$$

Want:

$$\sup_{p \in [0,1]} RR_p(\hat{p}) \leq \epsilon$$

for some (small) $\epsilon > 0$.

For Besag & Clifford (1991), SPRT: $\sup_p RR_P \geq 0.5$
Recursive Definition of the Boundaries

Want:

\[
\sup_p \text{RR}_p(\hat{p}) \leq \epsilon
\]

Suffices to ensure

\[
P_\alpha(\text{hit } B_U) \leq \epsilon
\]
\[
P_\alpha(\text{hit } B_L) \leq \epsilon
\]

Recursive definition:

Given \(U_1, \ldots, U_{n-1} \) and \(L_1, \ldots, L_{n-1} \), define

\(U_n \) as the minimal value such that

\[
P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n
\]

and \(L_n \) as the maximal value such that

\[
P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n
\]

where \(\epsilon_n \geq 0 \) with \(\epsilon_n \uparrow \epsilon \) (spending sequence).
Recursive Definition of the Boundaries

Want:

\[\sup_p \text{RR}_p(\hat{p}) \leq \epsilon \]

Suffices to ensure

\[P_\alpha(\text{hit } B_U) \leq \epsilon \]
\[P_\alpha(\text{hit } B_L) \leq \epsilon \]

Recursive definition:
Given \(U_1, \ldots, U_{n-1} \) and \(L_1, \ldots, L_{n-1} \), define

\(U_n \) as the minimal value such that

\[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]

and \(L_n \) as the maximal value such that

\[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

where \(\epsilon_n \geq 0 \) with \(\epsilon_n \uparrow \epsilon \) (spending sequence).
Recursive Definition of the Boundaries

Want:

\[\sup_{p} RR_{p}(\hat{p}) \leq \epsilon \]

Suffices to ensure

\[P_{\alpha}(\text{hit } B_{U}) \leq \epsilon \]
\[P_{\alpha}(\text{hit } B_{L}) \leq \epsilon \]

Recursive definition:

Given \(U_{1}, \ldots, U_{n-1} \) and \(L_{1}, \ldots, L_{n-1} \), define

\(U_{n} \) as the minimal value such that

\[P_{\alpha}(\text{hit } B_{U} \text{ until } n) \leq \epsilon_{n} \]

\(L_{n} \) as the maximal value such that

\[P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n} \]

where \(\epsilon_{n} \geq 0 \) with \(\epsilon_{n} \uparrow \epsilon \) (spending sequence).
Recursive Definition of the Boundaries

Want:

\[
\sup_p \text{RR}_p(\hat{p}) \leq \epsilon
\]

Suffices to ensure

\[
P_\alpha(\text{hit } B_U) \leq \epsilon
\]
\[
P_\alpha(\text{hit } B_L) \leq \epsilon
\]

Recursive definition:
Given \(U_1, \ldots, U_{n-1}\) and \(L_1, \ldots, L_{n-1}\), define

\(U_n\) as the minimal value such that

\[
P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n
\]

and \(L_n\) as the maximal value such that

\[
P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n
\]

where \(\epsilon_n \geq 0\) with \(\epsilon_n \uparrow \epsilon\) (spending sequence).
Recursive Definition - Example

- $\alpha = 0.2, \epsilon_n = 0.4 \frac{n}{5+n}$.
- $U_n =$ the minimal value such that
 $$P_{\alpha}(\text{hit } B_U \text{ until } n) \leq \epsilon_n$$
- $L_n =$ maximal value such that
 $$P_{\alpha}(\text{hit } B_L \text{ until } n) \leq \epsilon_n$$

<table>
<thead>
<tr>
<th>$P_{\alpha}(S_n = k, \tau \geq n)$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td></td>
</tr>
<tr>
<td>$k = 2$</td>
<td></td>
</tr>
<tr>
<td>$k = 1$</td>
<td></td>
</tr>
<tr>
<td>$k = 0$</td>
<td>1</td>
</tr>
<tr>
<td>ϵ_n</td>
<td>0</td>
</tr>
<tr>
<td>U_n</td>
<td>1</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- \(\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n} \).
- \(U_n = \) the minimal value such that
 \[
 P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n
 \]
- \(L_n = \) maximal value such that
 \[
 P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n
 \]

<table>
<thead>
<tr>
<th>(P_\alpha(S_n = k, \tau \geq n))</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 1)</td>
<td></td>
<td>.2</td>
</tr>
<tr>
<td>(k = 0)</td>
<td>1</td>
<td>.8</td>
</tr>
<tr>
<td>(\epsilon_n)</td>
<td>0</td>
<td>.07</td>
</tr>
<tr>
<td>(U_n)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(L_n)</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- $U_n =$ the minimal value such that
 \[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]
- $L_n =$ maximal value such that
 \[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

<table>
<thead>
<tr>
<th>$P_\alpha(S_n = k, \tau \geq n)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 2$</td>
<td></td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>$k = 1$</td>
<td>.2</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td>$k = 0$</td>
<td>1</td>
<td>.8</td>
<td>.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ_n</th>
<th>0</th>
<th>.07</th>
<th>.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- \(\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}. \)
- \(U_n = \) the minimal value such that
 \[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]
- \(L_n = \) maximal value such that
 \[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

<table>
<thead>
<tr>
<th>(P_\alpha(S_n = k, \tau \geq n))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = 2)</td>
<td></td>
<td>.04</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>(k = 1)</td>
<td>.2</td>
<td>.32</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td>(k = 0)</td>
<td>1</td>
<td>.8</td>
<td>.64</td>
<td>.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\epsilon_n)</th>
<th>0</th>
<th>.07</th>
<th>.11</th>
<th>.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_n)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(L_n)</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- $U_n =$ the minimal value such that
 $$P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n$$
- $L_n =$ maximal value such that
 $$P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n$$

<table>
<thead>
<tr>
<th>$P_\alpha(S_n = k, \tau \geq n)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 2$</td>
<td></td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>$k = 1$</td>
<td></td>
<td>0.2</td>
<td>0.32</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>$k = 0$</td>
<td></td>
<td>1</td>
<td>0.8</td>
<td>0.64</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ_n</th>
<th>0</th>
<th>0.07</th>
<th>0.11</th>
<th>0.15</th>
<th>0.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- $U_n =$ the minimal value such that
 \[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]
- $L_n =$ maximal value such that
 \[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

\[
\begin{array}{c|cccccc}
\alpha & S_n = k, \tau \geq n & & & & & \\
\hline
\epsilon_n & 0 & .07 & .11 & .15 & .18 & .20 \\
\hline
U_n & 1 & 2 & 2 & 2 & 3 & 3 \\
L_n & -1 & -1 & -1 & -1 & -1 & -1 \\
\hline
\end{array}
\]
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- $U_n =$ the minimal value such that
 \[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]
- $L_n =$ maximal value such that
 \[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

<table>
<thead>
<tr>
<th>$P_\alpha(S_n = k, \tau \geq n)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n =$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>ϵ_n</td>
<td>0</td>
<td>.07</td>
<td>.11</td>
<td>.15</td>
<td>.18</td>
<td>.20</td>
<td>.22</td>
</tr>
<tr>
<td>U_n</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- U_n = the minimal value such that
 \[P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n \]
- L_n = maximal value such that
 \[P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n \]

<table>
<thead>
<tr>
<th>$P_\alpha(S_n = k, \tau \geq n)$</th>
<th>$n =$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>k= 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k= 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k= 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϵ_n</th>
<th>0</th>
<th>.07</th>
<th>.11</th>
<th>.15</th>
<th>.18</th>
<th>.20</th>
<th>.22</th>
<th>.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Recursive Definition - Example

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.

- $U_n=$ the minimal value such that

 $$P_\alpha(\text{hit } B_U \text{ until } n) \leq \epsilon_n$$

- $L_n =$ maximal value such that

 $$P_\alpha(\text{hit } B_L \text{ until } n) \leq \epsilon_n$$

<table>
<thead>
<tr>
<th>$P_\alpha(S_n = k, \tau \geq n)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k=3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$k=2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$k=1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$k=0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ϵ_n</td>
<td>0</td>
<td>.07</td>
<td>.11</td>
<td>.15</td>
<td>.18</td>
<td>.20</td>
<td>.22</td>
<td>.23</td>
<td>.25</td>
</tr>
<tr>
<td>U_n</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>L_n</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Sequential Decision Procedure - Example

\[\alpha = 0.2, \quad \epsilon_n = 0.4 \frac{n}{5+n}. \]
Influence of ϵ on the stopping rule

$\epsilon = 0.1, 0.001, 10^{-5}, 10^{-7}; \epsilon_n = \epsilon \frac{n}{1000+n}$
Sequential Estimation based on the MLE

$$\hat{p} = \begin{cases} \frac{S_\tau}{\tau}, & \tau < \infty \\ \alpha, & \tau = \infty, \end{cases}$$

- One can show:
 - hitting the upper boundary implies $\hat{p} > \alpha$,
 - hitting the lower boundary implies $\hat{p} < \alpha$.

Hence,

$$\sup_p RR_p(\hat{p}) \leq \epsilon$$

- Furthermore, \exists random interval I_n s.t.
 - I_n only depends on X_1, \ldots, X_n,
 - $\hat{p} \in I_n$.
Example - Two-way sparse contingency table

\[
\begin{array}{ccccccc}
1 & 2 & 2 & 1 & 1 & 0 & 1 \\
2 & 0 & 0 & 2 & 3 & 0 & 0 \\
0 & 1 & 1 & 1 & 2 & 7 & 3 \\
1 & 1 & 2 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\end{array}
\]

- H_0: variables are independent.
- Reject for large values of the likelihood ratio test statistic T.
- $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0. Based on this: $p = 0.031$.
- Matrix sparse - approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with $n = 1,000$ replicates: $p = 0.041 < 0.05$.
- Probability of reporting $p > 0.05$: roughly 0.08.
Example - Two-way sparse contingency table

\[
\begin{array}{cccccccc}
1 & 2 & 2 & 1 & 1 & 0 & 1 \\
2 & 0 & 0 & 2 & 3 & 0 & 0 \\
0 & 1 & 1 & 1 & 2 & 7 & 3 \\
1 & 1 & 2 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\end{array}
\]

- H_0: variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- $T \overset{d}{\to} \chi^2_{(7-1)(5-1)}$ under H_0. Based on this: $p = 0.031$.
- Matrix sparse - approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with $n = 1,000$ replicates: $p = 0.041 < 0.05$.
 Probability of reporting $p > 0.05$: roughly 0.08.
Example - Two-way sparse contingency table

```
1  2  2  1  1  0  1
2  0  0  2  3  0  0
0  1  1  1  2  7  3
1  1  2  0  0  0  1
0  1  1  1  1  0  0
```

- **H_0:** variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- $T \overset{d}{\rightarrow} \chi^2_{(7-1)(5-1)}$ under H_0. Based on this: $p = 0.031$.
- Matrix sparse - approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with $n = 1,000$ replicates: $p = 0.041 < 0.05$.
 Probability of reporting $p > 0.05$: roughly 0.08.
Example - Bootstrap and Sequential Algorithm

```r
> dat <- matrix(c(1,2,2,1,1,0,1, 2,0,0,2,3,0,0, 0,1,1,1,2,7,3, 1,1,2,0,0,0,1, 0,1,1,1,1,0,0), nrow=5,ncol=7,byrow=TRUE)
> loglikrat <- function(data){
+ cs <- colSums(data); rs <- rowSums(data); mu <- outer(rs,cs)/sum(rs)
+ 2*sum(ifelse(data<=0.5, 0, data*log(data/mu)))
+ }
> resample <- function(data){
+ cs <- colSums(data); rs <- rowSums(data); n <- sum(rs)
+ mu <- outer(rs,cs)/n/n
+ matrix(rmultinom(1,n,c(mu)),nrow=dim(data)[1],ncol=dim(data)[2])
+ }
> t <- loglikrat(dat);
> library(simctest)
> res <- simctest(function(){loglikrat(resample(dat))>=t},maxsteps=1000)
> res
No decision reached.
Final estimate will be in [ 0.02859135 , 0.07965451 ]
Current estimate of the p.value: 0.041
Number of samples: 1000
> cont(res, steps=10000)
> p.value: 0.04035456
Number of samples: 8574
```
Further Uses of the Algorithm

- Simulation study to evaluate whether a test is liberal/conservative.
- Determining the sample size to achieve a certain power.
- Iterated Use:
 - Determining the power of a bootstrap test.
 - Simulation study to evaluate whether a bootstrap test is liberal/conservative.
 - Double bootstrap test.
Expected Hitting Time

Result: $E_p(\tau) < \infty \ \forall p \neq \alpha$

Example with $\alpha = 0.05, \epsilon_n = \epsilon \frac{n}{1000+n}$:

$\mu_p = \text{theoretical lower bound on } E_p(\tau)$.

▶ Note: $\int_0^1 \mu_p \, dp = \infty$;
▶ for iterated use: Need to limit the number of steps.
Expected Hitting Time

Result: $E_p(\tau) < \infty \ \forall p \neq \alpha$

Example with $\alpha = 0.05$, $\epsilon_n = \epsilon \frac{n}{1000+n}$:

$\mu_p =$ theoretical lower bound on $E_p(\tau)$.

- Note: $\int_0^1 \mu_p \, dp = \infty$;
- for iterated use: Need to limit the number of steps.
Summary

▶ Sequential implementation of Monte Carlo Tests and computation of p-values.
▶ Useful when implementing tests in packages.
▶ After a finite number of steps:
 ▶ \hat{p} or
 ▶ interval $[\hat{p}_n^L, \hat{p}_n^U]$ in which \hat{p} will lie.
▶ Guarantee (up to a very small error probability):
 \hat{p} is on the “correct side” of α.
▶ R-package `simctest` available on CRAN.
 (efficient implementation with C-code)
▶ For details see Gandy (2009).
References

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk. Accepted for publication in JASA.