Imperial College
London

Sequential Implementation of Monte Carlo Tests
with Uniformly Bounded Resampling Risk

Axel Gandy

Department of Mathematics
Imperial College London
a.gandy@imperial.ac.uk

useR! 2009, Rennes
July 8-10, 2009



Introduction

v

Imperial College
London

Test statistic T, reject for large values.
Observation: t.
p-value:

p=P(T=1)
Often not available in closed form.
Monte Carlo Test:

R 1
Pnaive = ; ZI(TI > t)a

where T, T1,... T, i.i.d.
Examples:

» Bootstrap,

» Permutation tests.
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Introduction

» Test statistic T, reject for large values.
Observation: t.
» p-value:

v

p=P(T=1)
Often not available in closed form.
» Monte Carlo Test:

. 1
Praive =~ Z (T >t),
=1 _ x,~B(1,p)
where T, T1,... T, i.i.d.
» Examples:
» Bootstrap,
» Permutation tests.
» Goal: Estimate p using few X;
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Introduction

» Test statistic T, reject for large values.
Observation: t.
» p-value:

v

p=P(T=1)
Often not available in closed form.
» Monte Carlo Test:

) 1¢
Praive = > UTi 2 1),
=1 _ x,~B(1,p)
where T, T1,... T, i.i.d.
» Examples:

» Bootstrap,
» Permutation tests.

» Goal: Estimate p using few X;
Mainly interested in deciding if p < « for some a.
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Sequential approaches based on S, =>"" | X;

Imperial College Axel Gandy

London Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk



Sequential approaches based on S, =>"" | X;
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Sequential approaches based on S, =>"" | X;
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Compute p based on S,
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Previous Approaches
» Besag & Clifford (1991):

Sn
h g

0 m

» (Truncated) Sequential Probability Ratio Test, Fay et al. (2007)
Sn

0 m

» R-package MChtest.
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What do we really want?
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What do we really want?
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What do we really want?

Is p<a?

Two individuals using the same statistical method on the same data
should arrive at the same conclusion.
First law of applied statistics, Gleser (1996)
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What do we really want?

Is p<a?

Two individuals using the same statistical method on the same data
should arrive at the same conclusion.
First law of applied statistics, Gleser (1996)

Consider the resampling risk
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What do we really want?

Is p<a?

Two individuals using the same statistical method on the same data
should arrive at the same conclusion.
First law of applied statistics, Gleser (1996)

Consider the resampling risk
. Po(p>a) ifp<a,
<

Want:

for some (small) € > 0.
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What do we really want?

Is p<a?

Two individuals using the same statistical method on the same data
should arrive at the same conclusion.
First law of applied statistics, Gleser (1996)

Consider the resampling risk

RRy(p) = {

Want:

for some (small) € > 0.
For Besag & Clifford (1991), SPRT: sup, RRp > 0.5
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Recursive Definition of the Boundaries

Want:
supRRp(p) <€
p
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Recursive Definition of the Boundaries

Want:
supRRp(p) <€
p

Suffices to ensure
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Recursive Definition of the Boundaries

Want:
supRRp(p) <€
p

Suffices to ensure

Recursive definition:

Py (hit By until n) < e,

Pa(hit By until n) < e,
where €, > 0 with ¢, /" € (spending sequence).
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Recursive Definition of the Boundaries

Want:
supRRp(p) <€
p

Suffices to ensure

Recursive definition:
Given Uy,...,U,_1 and Lq,...,L,_1, define
» U, as the minimal value such that
Py (hit By until n) < e,
» and L, as the maximal value such that
Pa(hit By until n) < e,
where €, > 0 with ¢, /" € (spending sequence).
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,
» [, = maximal value such that

P (hit By until n) <,

n—=

Pu(Sn =k, 7>n) | O
k=3
k=2
k=1
k=10
€n

U, | 1

L, | -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,
» [, = maximal value such that

P (hit By until n) <,

n—=

Pu(Sn=k,7>n) | 0 1
k=3
k=2

k=1 2

k=10 8

€n .07

u,| 1 2

L, -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,
» [, = maximal value such that

P (hit By until n) <,

n—=
P(Sy=k,7>n) | 0 1 2
k=3
k=2 04
k=1 2 32
k=0|1 8 .64

en| 0 .07 .11
uo| 1 2 2
L,|-1 -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,

» [, = maximal value such that

P (hit By until n) <,

n—=

P(Sy=k,7>n) | 0 1 2 3
k=3

k=2 04 .06

k=1 2 32 .38

k=0|1 .8 .64 .51

en] 0 07 11 .15

U, |1 2 2 2

ly|-1 -1 -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,

» [, = maximal value such that

P (hit By until n) <,

n—=
P(Sh=k,r>n) | 0 1 2 3 4
k=3
k=2 04 06 .08
k=1 2 32 38 .41
k=0|1 8 64 51 .41
en] O 07 11 .15 .18
U, |1 2 2 2 3
ly|-1 -1 -1 -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,

» [, = maximal value such that

P (hit By until n) <,

n—=
R (S, =k,7>n) | O 1 2 3 4 5

k=3 .02
k=2 .04 .06 .08 .14
k=1 2 32 38 41 41
k=01 .8 .64 .51 .41 .33

en | 0 .07 .11 .15 .18 .20
uo| 1 2 2 2 3 3
L,j-1t -1 -1 -1 -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,

» [, = maximal value such that

P (hit By until n) <,

n—=
P(Sa=k,7>n) |0 1 2 3 4 5 6
k=3 02 03
k= 2 04 06 .08 .14 20
k=1 2 32 38 41 41 39
k=0|1 8 64 51 41 33 .26
x| 0 07 11 .15 18 20 .22
U,|1 2 2 2 3 3 3
ly|-1 -1 -1 -1 -1 -1 -1
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,
» [, = maximal value such that

P (hit By until n) <,

n—=
P(So=k,7>n) |0 1 2 3 4 5 6 7
k=3 02 03 .04
k=2 04 06 .08 .14 20 .24
k=1 2 32 38 41 41 39 37
k=0|1 8 64 51 41 33 26 21

en | 0 .07 .11 .15 .18 .20 .22 .23

uo| 1 2 2 2 3 3 3 3
/-t -1 -1 -1 -1 -1 -1 0
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Recursive Definition - Example

> =02 ¢,= 0.451,1.

» U,=the minimal value such that

P.(hit By until n) <e¢,
» [, = maximal value such that

P (hit By until n) <,

n=
R (S, =k,7>n) | O 1 2 3 4 5 6 7 8

k=3 .02 .03 .04 .05
k=2 .04 06 .08 .14 .20 .24 .26
k=1 2 32 38 41 41 39 37 .29
k=01 .8 .64 .51 41 33 26 .21

en | 0 .07 .11 15 .18 .20 .22 .23 .25
uo| 1 2 2 2 3 3 3 3 3
tlyj-t -1 -1 -1 -1 -1 -1 0 0
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Sequential Decision Procedure - Example

a=0.2 ¢, = 0.45%1.

0 10 20 30 40 50 60 70 80 90 100
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Influence of € on the stopping rule

e =0.1,0.001, 107, 1077; €y = €750

100 150 200 250 300 350
| | | | | |

50
|

T T T T T
0 1000 2000 3000 4000 5000
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Sequential Estimation based on the MLE

S
R —, T <00
p= T
«, T = 00,

» One can show:
> hitting the upper boundary implies p > «,
» hitting the lower boundary implies p < a.
Hence,
supRR,(p) < e
p

» Furthermore, 3 random interval /, s.t.
» |, only depends on X, ..., X,
> pel,.
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Example - Two-way sparse contingency table

O, ON -
=== O N
=N = O N
H O R NR
= ON W
o O N oo
O = WO

» Hp: variables are independent.

> Reject for large values of the likelihood ratio test statistic T

d
> T = X%?—l)(S—l) under Hp.
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Example - Two-way sparse contingency table

O, ON -
=== O N
=N = O N
H O R NR
= ON W
o O N oo
O = WO

» Hp: variables are independent.

> Reject for large values of the likelihood ratio test statistic T

» T X%?—l)(S—l) under Hp. Based on this: p = 0.031.
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Example - Two-way sparse contingency table

O ON
H R R ON
R NP ON
H O R NR
H ONWR
O O N oo
O WO

v

Hp: variables are independent.

v

Reject for large values of the likelihood ratio test statistic T
T4 X%7_1)(5_1) under Hp. Based on this: p = 0.031.
Matrix sparse - approximation poor?

Use parametric bootstrap based on row and column sums.

vV v . vY

Naive test statistic pnaive With n = 1,000 replicates:
p = 0.041 < 0.05.
Probability of reporting p > 0.05: roughly 0.08.
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Example - Bootstrap and Sequential Algorithm

> dat <- matrix(c(1,2,2,1,1,0,1, 2,0,0,2,3,0,0, 0,1,1,1,2,7,3, 1,1,2,0,0,0,1,
+ 0,1,1,1,1,0,0), nrow=5,ncol=7,byrow=TRUE)

> loglikrat <- function(data){

+ cs <- colSums(data);rs <- rowSums(data); mu <- outer(rs,cs)/sum(rs)
+  2xsum(ifelse(data<=0.5, 0,dataxlog(data/mu)))

+ 3

> resample <- function(data){

+ cs <- colSums(data);rs <- rowSums(data); n <- sum(rs)

+ mu <- outer(rs,cs)/n/n

+ matrix(rmultinom(l,n,c(mu)),nrow=dim(data) [1],ncol=dim(data) [2])
+}

> t <- loglikrat(dat);

> library(simctest)

> res <- simctest(function(){loglikrat(resample(dat))>=t},maxsteps=1000)
> res

No decision reached.

Final estimate will be in [ 0.02859135 , 0.07965451 ]
Current estimate of the p.value: 0.041

Number of samples: 1000

> cont(res, steps=10000)

p.value: 0.04035456

Number of samples: 8574



Further Uses of the Algorithm

Imperial College

London

» Simulation study to evaluate whether a test is
liberal /conservative.

» Determining the sample size to achieve a certain power.
> lterated Use:
» Determining the power of a bootstrap test.
» Simulation study to evaluate whether a bootstrap test is
liberal /conservative.
» Double bootstrap test.
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Expected Hitting Time
Result: Ep(7) < 00 Vp # «

N _ .
Example with o = 0.05, €, = 355077
S £=0.001
@© - - g=1e-05
= — g=1e-07
—=
S
<
o
< _|
:E-H
=
N
ur |
o |
-~ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p

pp = theoretical lower bound on E,(7).



Expected Hitting Time
Result: Ep(7) < 00 Vp # «

N _ .
Example with o = 0.05, €, = 355077
S £=0.001
@© - - g=1e-05
= — g=1e-07
—=
S
<
o
< _|
:E-H
=
N
ur |
o |
-~ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p

pp = theoretical lower bound on E,(7).

» Note: fol ppdp = o0;
» for iterated use: Need to limit the number of steps.



Summary

» Sequential implementation of Monte Carlo Tests and
computation of p-values.
> Useful when implementing tests in packages.
> After a finite number of steps:
> por
> interval [pL, pY] in which p will lie.

» Guarantee (up to a very small error probability):

p is on the “correct side” of a.

» R-package simctest available on CRAN.
(efficient implementation with C-code)

» For details see Gandy (2009).
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