Using R for the design and analysis of computer experiments with the Nimrod toolkit

Neil Diamond1, David Abramson2, Tom Peachey2

1. Department of Econometrics and Business Statistics
2. Caulfield School of Information Technology

MONASH University
The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
Computer Experiments

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
Computer Experiments

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
Computer Experiments

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.

- At least two books on the topic:
Computer Experiments

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
- Some R packages-more on that later.
Nimrod

Developed by Computer Scientists at Monash University’s eScience and Grid Engineering Laboratory.
Nimrod

- Developed by Computer Scientists at Monash University’s eScience and Grid Engineering Laboratory.
- Automates the formulation, running, and collation of the individual experiments.
Nimrod

- Developed by Computer Scientists at Monash University’s eScience and Grid Engineering Laboratory.
- Automates the formulation, running, and collation of the individual experiments.
- Includes a distributed scheduling component that can manage the scheduling of individual jobs.
Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
Nimrod Set of Tools

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
Nimrod Set of Tools

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).
Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).
Nimrod Set of Tools

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).

These can be run stand-alone or accessed via the Nimrod portal.
Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
- Antenna Design
Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
- Antenna Design
- Cardiac Modelling
Workflow Engines

There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.
Workflow Engines

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.

- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.
Workflow Engines

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.
- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.
- Similarly, Nimrod was not designed to execute arbitrary workflows.
Workflow Engines

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.

- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.

- Similarly, Nimrod was not designed to execute arbitrary workflows.

- Thus, it is difficult to run sweeps over workflows, and workflows containing sweeps.
To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).
To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).

It leverages a number of the techniques developed in the earlier Nimrod tools for distributing tasks to the Grid.
To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).

It leverages a number of the techniques developed in the earlier Nimrod tools for distributing tasks to the Grid.

Kepler allows the user to specify R expressions and access R objects as part of the scientific workflow.
Example Workflow
Statistical Approach to Computer Experiments

Unlike physical experiments, repeated experiments give the same results.
Unlike physical experiments, repeated experiments give the same results.

Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
- Allows estimates of untried experiments.
Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
- Allows estimates of untried experiments.
- Gives an estimate of the uncertainty.
Computer Experiments-Designs

- Simplest method-Latin Hypercubes
Computer Experiments - Designs

- Simplest method - Latin Hypercubes
- Other more sophisticated methods include Orthogonal Arrays and Scrambled Nets.
Computer Experiments-Designs

- Simplest method-Latin Hypercubes
- Other more sophisticated methods include Orthogonal Arrays and Scrambled Nets.
- Various space filling designs.
Response = Linear Model + Departure

\[y(x) = \beta + z(x) \]

\[E(z(x)) = 0 \]

\[\text{Cov}(z(t), z(u)) = \sigma_z^2 \prod_{j=1}^{d} R_j(t_j, u_j) \]

\[R_j(t_j, u_j) = \exp \left[-\theta_j(t_j - u_j)^{p_j} \right] \]
MLE of $\theta, p, \beta, \text{ and } \sigma^2$

Reduces to numerically optimising

$$-\frac{1}{2}(n \ln \hat{\sigma}^2 + \ln \det R_D)$$

$$R_D = \text{Matrix of correlations for design points}$$

$$\hat{\beta} = (1^T R_D^{-1} 1^T)^{-1} 1^T R_D^{-1} y$$

$$\hat{\sigma}^2 = \frac{1}{n} (y - 1\hat{\beta})^T R_D^{-1} (y - 1\hat{\beta})$$
Best Linear Unbiased Predictor for an untried \(x \)

\[
\hat{y}_x = \hat{\beta} + r^T(x)R_D^{-1}(y - 1\hat{\beta})
\]

where

\[
r(x) = [R(x_1, x), R(x_2, x), \ldots, R(x_n, x)]^T
\]

Design point : \([x_1, x_2, \ldots, x_n] \)
Untried Input : \(x \)

Interpolates the data points.
Implementations in R

- BACCO
Implementations in R

- BACCO
 - Emulator
Implementations in R

- BACCO
 - Emulator
 - Approximator
Implementations in R

- BACCO
 - Emulator
 - Approximator
 - Calibrator
Implementations in R

- BACCO
 - Emulator
 - Approximator
 - Calibrator

- mlegp: an R package for Gaussian process modeling and sensitivity analysis
Implementations in R

- BACCO
 - Emulator
 - Approximator
 - Calibrator

- mlegp: an R package for Gaussian process modeling and sensitivity analysis

- Certainly others . . .
Example Workflow
Using R for the design and analysis of computer experiments with the Nimrod toolkit

Latin Hypercube Actor

```r
library(emulator)
set.seed(200592)
nimrod.xmat <-
mins+(maxs-mins)*latin.hypercube(N,dims)
colnames(nimrod.xmat) <-
    unlist(strsplit(varnames,splitted="","))
if (dms>2) (pairs(nimrod.xmat)) else
    (plot(nimrod.xmat))
```
Latin Hypercube Design
Nimrod takes the experimental design and controls the running of the experiments and collation of results.
Nimrod/K Actor

- Nimrod takes the experimental design and controls the running of the experiments and collation of results.
- Passes the results onto mlegp actor which fits the Gaussian model to the data.
mlegp predictions Actor

- Takes fitted model and predicts at a grid of untried inputs.
mlegp predictions Actor

- Takes fitted model and predicts at a grid of untried inputs.
- Inputs are the granularity of the grid, and which are the primary and conditioning inputs.
mlegp predictions Actor

- Takes fitted model and predicts at a grid of untried inputs.
- Inputs are the granularity of the grid, and which are the primary and conditioning inputs.
- Uses Lattice graphics to produce a visualisation of the surface.
Visualisation

<table>
<thead>
<tr>
<th>x3 : 16.67</th>
<th>x3 : 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x3 : 0</th>
<th>x3 : 8.33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Message

- Computer Experiments are very important.
Key Message

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
Key Message

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.
Key Message

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.
- Using Nimrod/K takes advantage of the Kepler workflow engine.
Key Message

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.
- Using Nimrod/K takes advantage of the Kepler workflow engine.
- Kepler and R are integrated, making it easy to use existing packages in R for computer experiments, and extends their usefulness.
Monash eScience and Grid Engineering Laboratory
http://messagelab.monash.edu.au/