Fitting parametric distributions using R: the \textit{fitdistrplus} package

M. L. Delignette-Muller - CNRS UMR 5558
R. Pouillot
J.-B. Denis - INRA MIAJ

useR! 2009, 10/07/2009
Specifying the probability distribution that best fits a sample data among a predefined family of distributions

- a frequent need especially in Quantitative Risk Assessment
- general-purpose maximum-likelihood fitting routine for the parameter estimation step: \texttt{fitdistr(MASS)} (Venables and Ripley, 2002)
- possibility to implement other steps using \texttt{R} (Ricci, 2005)
- but no specific package dedicated to the whole process
- difficulty to work with censored data
Objective

Build a package that provides functions to help the whole process of specification of a distribution from data

- choose among a family of distributions the best candidates to fit a sample
- estimate the distribution parameters and their uncertainty
- assess and compare the goodness-of-fit of several distributions

that specifically handles different kinds of data

- discrete
- continuous with possible censored values (right-, left- and interval-censored with several upper and lower bounds)
Technical choices

- Skewness-kurtosis graph for the choice of distributions
 (Cullen and Frey, 1999)

- Two fitting methods
 - matching moments
 for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using optim(stats)
 for any distribution, predefined or defined by the user
 for non-censored or censored data

- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap

- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots
Technical choices

- Skewness-kurtosis graph for the choice of distributions (Cullen and Frey, 1999)

- Two fitting methods
 - matching moments
 for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using `optim(stats)`
 for any distribution, predefined or defined by the user
 for non-censored or censored data

- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap

- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots
Technical choices

- Skewness-kurtosis graph for the choice of distributions
 (Cullen and Frey, 1999)

- Two fitting methods
 - matching moments
 for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using \texttt{optim(stats)}
 for any distribution, predefined or defined by the user
 for non-censored or censored data

- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric \texttt{bootstrap}

- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots
Technical choices

- Skewness-kurtosis graph for the choice of distributions
 (Cullen and Frey, 1999)

- Two fitting methods
 - matching moments
 for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using optim(stats)
 for any distribution, predefined or defined by the user
 for non-censored or censored data

- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap

- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots
Main functions of `fitdistrplus`

- **descdist**: provides a skewness-kurtosis graph to help to choose the best candidate(s) to fit a given dataset
- **fitdist and plot.fitdist**: for a given distribution, estimate parameters and provide goodness-of-fit graphs and statistics
- **bootdist**: for a fitted distribution, simulates the uncertainty in the estimated parameters by bootstrap resampling
- **fitdistcens, plot.fitdistcens and bootdistcens**: same functions dedicated to continuous data with censored values
Skewness-kurtosis plot for continuous data

Ex. on consumption data: food serving sizes (g)

> descdist(serving.size)

Cullen and Frey graph

- Observation
- Theoretical distributions
 - normal
 - uniform
 - exponential
 - logistic
 - beta
 - lognormal
 - gamma
(Weibull is close to gamma and lognormal)
> descdist(serving.size, boot=1001)

Cullen and Frey graph

Observation
bootstrapped values

Theoretical distributions
- normal
- uniform
- exponential
- logistic
- beta
- lognormal
- gamma

(Weibull is close to gamma and lognormal)
Skewness-kurtosis plot for discrete data

Ex. on microbial data: counts of colonies on small food samples

> descdist(colonies.count, discrete=TRUE)

Cullen and Frey graph

Observation

Theoretical distributions

- normal
- negative binomial
- Poisson
Fit of a given distribution by maximum likelihood or matching moments

Ex. on consumption data: food serving sizes (g)

- Maximum likelihood estimation

  ```r
  > fg.mle <- fitdist(serving.size, "gamma", method = "mle")
  > summary(fg.mle)
  
  estimate      Std. Error
  shape     4.0083       0.34134
  rate      0.0544       0.00494
  
  Loglikelihood: -1254
  ```

- Matching moments estimation

  ```r
  > fg.mom <- fitdist(serving.size, "gamma", method = "mom")
  > summary(fg.mom)
  
  estimate
  shape     4.2285
  rate      0.0574
  ```
Fit of a given distribution
by maximum likelihood or matching moments

Ex. on consumption data: food serving sizes (g)

- **Maximum likelihood estimation**
  ```
  > fg.mle<-fitdist(serving.size,"gamma",method="mle")
  > summary(fg.mle)
  estimate Std. Error
  shape  4.0083  0.34134
  rate  0.0544  0.00494
  Loglikelihood:  -1254
  ```

- **Matching moments estimation**
  ```
  > fg.mom<-fitdist(serving.size,"gamma",method="mom")
  > summary(fg.mom)
  estimate
  shape  4.2285
  rate  0.0574
  ```
Comparison of goodness-of-fit statistics

Ex. on consumption data: food serving sizes (g)

Comparison of the fits of three distributions using the Anderson-Darling statistics

- **Gamma**

  ```r
  > fitdist(serving.size,"gamma")$ad
  [1] 3.566019
  ```

- **lognormal**

  ```r
  > fitdist(serving.size,"lnorm")$ad
  [1] 4.543654
  ```

- **Weibull**

  ```r
  > fitdist(serving.size,"weibull")$ad
  [1] 3.573646
  ```
Goodness-of-fit graphs for continuous data

Ex. on consumption data: food serving sizes (g)

```r
> plot(fg.mle)
```

Empirical and theoretical distr.

QQ-plot

Empirical and theoretical CDFs

PP-plot
Goodness-of-fit graphs for discrete data

Ex. on microbial data: counts of colonies on small food samples

```r
> fnbinom <- fitdist(colonies.count, "nbinom")
> plot(fnbinom)
```

Empirical (black) and theoretical (red) distr.

Empirical (black) and theoretical (red) CDFs
Ex. on microbial censored data: concentrations in food
- with left censored values (not detected)
- and interval censored values (detected but not counted)

```r
> log10.conc
  left  right
1 1.73    1.73
2 1.51    1.51
3 0.77    0.77
4 1.96    1.96
5 1.96    1.96
6-1.40    0.00
7-1.40   -0.70
8   NA    -1.40
9 -0.11   -0.11
...```

```r
> fnorm<-fitdistcens(log10.conc, "norm")
> summary(fnorm)

 estimate Std. Error
mean 0.118 0.332
sd 1.426 0.261

Loglikelihood: -32.1```
Goodness-of-fit graphs for censored data

Ex. on microbial censored data: concentrations in food

```r
> plot(fnorm)
```

Cumulative distribution plot
Bootstrap resampling

Ex. on microbial censored data

> bnorm<-bootdistcens(fnorm)
> summary(bnorm)
Nonparametric bootstrap medians and 95% CI
 Median 2.5% 97.5%
mean 0.233 -0.455 0.875
sd 1.294 0.908 1.776

> plot(bnorm)
Use of the bootstrap in risk assessment

The bootstrap sample may be used to take into account uncertainty in risk assessment, in two-dimensional Monte Carlo simulations, as proposed in the package \texttt{mc2d}.
Conclusion

- **fitdistrplus** could help risk assessment. It is a part of a collaborative project with 2 other packages under development, *mc2d* and *ReBaStaBa*:

 The R-Forge project "Risk Assessment with R"

 http://riskassessment.r-forge.r-project.org/

- **fitdistrplus** could also be used more largely to help the fit of univariate distributions to data
fitdistrplus could help risk assessment. It is a part of a collaborative project with 2 other packages under development, mc2d and ReBaStaBa:

The R-Forge project "Risk Assessment with R"
http://riskassessment.r-forge.r-project.org/

fitdistrplus could also be used more largely to help the fit of univariate distributions to data
fitdistrplus is still under development. Many improvements are planned

- other goodness-of-fit statistics
- other graphs for goodness-of-fit for censored data (Turnbull,...)
- optimized choice of the algorithm used in \texttt{optim} for the likelihood maximization
- graphs of likelihood contours (detection of identifiability problems)
- ...

\textit{do not hesitate to provide us other improvement ideas!}