
Faculty of Health Sciences

What we wish people knew more
about when working with R

Peter Dalgaard
Dept. of Biostatistics
University of Copenhagen



Background

I R has entered the mainstream, and a great many research
projects in statistics now involve R programming or the
writing of R packages

I Young researchers will typically need to be taught about
relatively advanced aspects of R

I Consider planning, say, an advanced course on R programming
I Much will be pretty straightforward
I Not necessarily easy, but you know that you need to take the

students from A to B along a path with certain twist and
turns and stumbling stones

2 / 19



Background

I R has entered the mainstream, and a great many research
projects in statistics now involve R programming or the
writing of R packages

I Young researchers will typically need to be taught about
relatively advanced aspects of R

I Consider planning, say, an advanced course on R programming
I Much will be pretty straightforward
I Not necessarily easy, but you know that you need to take the

students from A to B along a path with certain twist and
turns and stumbling stones

2 / 19



Background

I R has entered the mainstream, and a great many research
projects in statistics now involve R programming or the
writing of R packages

I Young researchers will typically need to be taught about
relatively advanced aspects of R

I Consider planning, say, an advanced course on R programming
I Much will be pretty straightforward
I Not necessarily easy, but you know that you need to take the

students from A to B along a path with certain twist and
turns and stumbling stones

2 / 19



Background

I R has entered the mainstream, and a great many research
projects in statistics now involve R programming or the
writing of R packages

I Young researchers will typically need to be taught about
relatively advanced aspects of R

I Consider planning, say, an advanced course on R programming
I Much will be pretty straightforward
I Not necessarily easy, but you know that you need to take the

students from A to B along a path with certain twist and
turns and stumbling stones

2 / 19



Background

I R has entered the mainstream, and a great many research
projects in statistics now involve R programming or the
writing of R packages

I Young researchers will typically need to be taught about
relatively advanced aspects of R

I Consider planning, say, an advanced course on R programming
I Much will be pretty straightforward
I Not necessarily easy, but you know that you need to take the

students from A to B along a path with certain twist and
turns and stumbling stones

2 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



The blank stare

I At some points, however, you find yourself facing a wall of
ignorance

I There are things students just don’t know the first thing about
I Say, you want to show how to speed up a slow piece of R code
I So you explain that they should rewrite parts of the code in C,

compile it, and link it dynamically
I What is C?
I What is a compiler?
I What is linking?

3 / 19



Generic problem

I In order to explain Z, I must first tell them about Y, but that
won’t make sense to them because they never heard of X, etc.

I This is getting worse! A generic trend in computing is that
more and more functionality gets hidden away.

I In some senses, this may be a good trend, making computers
accessible by more people

I However, from a scientific point of view, it makes it harder to
understand what is going on inside a computer

I (Car analogy: Making cars simpler and safer to operate does
not make better car engineers)

4 / 19



Generic problem

I In order to explain Z, I must first tell them about Y, but that
won’t make sense to them because they never heard of X, etc.

I This is getting worse! A generic trend in computing is that
more and more functionality gets hidden away.

I In some senses, this may be a good trend, making computers
accessible by more people

I However, from a scientific point of view, it makes it harder to
understand what is going on inside a computer

I (Car analogy: Making cars simpler and safer to operate does
not make better car engineers)

4 / 19



Generic problem

I In order to explain Z, I must first tell them about Y, but that
won’t make sense to them because they never heard of X, etc.

I This is getting worse! A generic trend in computing is that
more and more functionality gets hidden away.

I In some senses, this may be a good trend, making computers
accessible by more people

I However, from a scientific point of view, it makes it harder to
understand what is going on inside a computer

I (Car analogy: Making cars simpler and safer to operate does
not make better car engineers)

4 / 19



Generic problem

I In order to explain Z, I must first tell them about Y, but that
won’t make sense to them because they never heard of X, etc.

I This is getting worse! A generic trend in computing is that
more and more functionality gets hidden away.

I In some senses, this may be a good trend, making computers
accessible by more people

I However, from a scientific point of view, it makes it harder to
understand what is going on inside a computer

I (Car analogy: Making cars simpler and safer to operate does
not make better car engineers)

4 / 19



Generic problem

I In order to explain Z, I must first tell them about Y, but that
won’t make sense to them because they never heard of X, etc.

I This is getting worse! A generic trend in computing is that
more and more functionality gets hidden away.

I In some senses, this may be a good trend, making computers
accessible by more people

I However, from a scientific point of view, it makes it harder to
understand what is going on inside a computer

I (Car analogy: Making cars simpler and safer to operate does
not make better car engineers)

4 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



How do we know what we know?

I Is education deteriorating?
I Not really. If we look back, people who were into statistical

computing were often not formally educated.
I Some people had switched from Computer Science to

Statistics
I Others came out of the "Commodore 64" generation (typically

teenagers from the 80s and 90s)
I At about the time R took off, there was the IT explosion and

the whole Unix/Linux/Open Source culture around the turn of
the millennium

I We are now moving from a relatively tight-knit subculture to
a position in the mainstream, and this requires new thinking

5 / 19



Example: Parse trees

exp(−x^2/2)

exp /

−

2

^ 

x

2

I In math, people know operator precedence intuitively
I However, they may not always realize that there is a

well-defined process (parsing) leading from one representation
to the other

I Or, that this in R is represented as an object which forms the
basis of the later evaluation

6 / 19



Example: Parse trees

exp(−x^2/2)

exp /

−

2

^ 

x

2

I In math, people know operator precedence intuitively
I However, they may not always realize that there is a

well-defined process (parsing) leading from one representation
to the other

I Or, that this in R is represented as an object which forms the
basis of the later evaluation

6 / 19



Example: Parse trees

exp(−x^2/2)

exp /

−

2

^ 

x

2

I In math, people know operator precedence intuitively
I However, they may not always realize that there is a

well-defined process (parsing) leading from one representation
to the other

I Or, that this in R is represented as an object which forms the
basis of the later evaluation

6 / 19



Example: Parse trees

exp(−x^2/2)

exp /

−

2

^ 

x

2

I In math, people know operator precedence intuitively
I However, they may not always realize that there is a

well-defined process (parsing) leading from one representation
to the other

I Or, that this in R is represented as an object which forms the
basis of the later evaluation

6 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



How did I know about parsing?

I Mixture of many sources
I Back pages of “Pascal User Manual and Report”: recursive

descent parser
I PL/0 parser in Wirth: “Algorithms + Data Stuctures =

Programs”. This was not actually in the curriculum, but I
rubbed shoulders with 3rd yr CS students

I Exposure to Genstat, BMDP (ca. 1980)
I Aho & Ullman’s “Dragon book” taught me about LALR(1)

grammars
I HP-UX series 300 computer on a project with som eye

doctors. This contained YACC – “Yet Another
Compiler-Compiler”

7 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



A catalogue of ignorance

I Parsing
I Interfacing to C
I Floating point issues
I Computational linear algebra
I Finer points in computer languages
I Obvious pitfall: Trying to explain in a 40 minute talk what I

claim requires a significant chunk of a largish course
I Pitfall no. 2: The grumpy old man. . .
I Pitfall no. 3: Displaying my own ignorance

8 / 19



Parsing

I Internal structure of expressions, code
I Needed in plotmath, model formulas
I Names and syntactical names
I Tokenizer, lexical analysis, (regular expressions)
I Properties of computer syntax: One-step lookahead, R’s

newline anomaly

9 / 19



Parsing

I Internal structure of expressions, code
I Needed in plotmath, model formulas
I Names and syntactical names
I Tokenizer, lexical analysis, (regular expressions)
I Properties of computer syntax: One-step lookahead, R’s

newline anomaly

9 / 19



Parsing

I Internal structure of expressions, code
I Needed in plotmath, model formulas
I Names and syntactical names
I Tokenizer, lexical analysis, (regular expressions)
I Properties of computer syntax: One-step lookahead, R’s

newline anomaly

9 / 19



Parsing

I Internal structure of expressions, code
I Needed in plotmath, model formulas
I Names and syntactical names
I Tokenizer, lexical analysis, (regular expressions)
I Properties of computer syntax: One-step lookahead, R’s

newline anomaly

9 / 19



Parsing

I Internal structure of expressions, code
I Needed in plotmath, model formulas
I Names and syntactical names
I Tokenizer, lexical analysis, (regular expressions)
I Properties of computer syntax: One-step lookahead, R’s

newline anomaly

9 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



Floating-point issues

I Limits of accuracy, decimals not representable in binary
I (FAQ 7.31...)
I Deeper issue: knowledge of bit-level storage and hardware
I IEEE standards
I FP exceptions
I Loss of fine control caused by optimizers reordering code

10 / 19



C, Fortran

I Structure of compiled languages
I Modular programs, linking,.libraries
I The C preprocessor
I Calling conventions

11 / 19



C, Fortran

I Structure of compiled languages
I Modular programs, linking,.libraries
I The C preprocessor
I Calling conventions

11 / 19



C, Fortran

I Structure of compiled languages
I Modular programs, linking,.libraries
I The C preprocessor
I Calling conventions

11 / 19



C, Fortran

I Structure of compiled languages
I Modular programs, linking,.libraries
I The C preprocessor
I Calling conventions

11 / 19



Interfaces to C and Fortran

I Access macros
I Some level of knowledge about the evaluator and internal

storage of code
I Classical LISP implementation CAR/CDR/CONS
I Garbage collection and PROTECT
I The “tree” of objects that do not need protection

12 / 19



Interfaces to C and Fortran

I Access macros
I Some level of knowledge about the evaluator and internal

storage of code
I Classical LISP implementation CAR/CDR/CONS
I Garbage collection and PROTECT
I The “tree” of objects that do not need protection

12 / 19



Interfaces to C and Fortran

I Access macros
I Some level of knowledge about the evaluator and internal

storage of code
I Classical LISP implementation CAR/CDR/CONS
I Garbage collection and PROTECT
I The “tree” of objects that do not need protection

12 / 19



Interfaces to C and Fortran

I Access macros
I Some level of knowledge about the evaluator and internal

storage of code
I Classical LISP implementation CAR/CDR/CONS
I Garbage collection and PROTECT
I The “tree” of objects that do not need protection

12 / 19



Interfaces to C and Fortran

I Access macros
I Some level of knowledge about the evaluator and internal

storage of code
I Classical LISP implementation CAR/CDR/CONS
I Garbage collection and PROTECT
I The “tree” of objects that do not need protection

12 / 19



Algorithms and numerics

I Error sensitivity, e.g. SVD vs (X ′X)−1

I Computational complexity
I Memory consumption
I BLAS issues, CPU architecture

13 / 19



Algorithms and numerics

I Error sensitivity, e.g. SVD vs (X ′X)−1

I Computational complexity
I Memory consumption
I BLAS issues, CPU architecture

13 / 19



Algorithms and numerics

I Error sensitivity, e.g. SVD vs (X ′X)−1

I Computational complexity
I Memory consumption
I BLAS issues, CPU architecture

13 / 19



Algorithms and numerics

I Error sensitivity, e.g. SVD vs (X ′X)−1

I Computational complexity
I Memory consumption
I BLAS issues, CPU architecture

13 / 19



Markup languages

I Need it for Rd format files
I HTML, LaTeX, XML
I General idea that text is a computable quantity
I . . . and that higher-level structure is beneficial

14 / 19



Markup languages

I Need it for Rd format files
I HTML, LaTeX, XML
I General idea that text is a computable quantity
I . . . and that higher-level structure is beneficial

14 / 19



Markup languages

I Need it for Rd format files
I HTML, LaTeX, XML
I General idea that text is a computable quantity
I . . . and that higher-level structure is beneficial

14 / 19



Markup languages

I Need it for Rd format files
I HTML, LaTeX, XML
I General idea that text is a computable quantity
I . . . and that higher-level structure is beneficial

14 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



Programming language taxonomy

I (“Lots of quaintly named little languages”)
I Compiled vs. interpreted languages
I Late and early binding
I OOP concepts
I Lazy evaluation
I A better theoretical overview should help explaining why R

sometimes behaves “strangely”

15 / 19



R behaving badly

x <- 8
ll <- BinomialLikelihood(x, 20)
x <- 2
curve(ll)
x <- 15
curve(ll)

With an unfortunate coding of BinomialLikelihood, this gives
the curve for BinomialLikelihood(2, 20) twice!

16 / 19



R behaving badly

x <- 8
ll <- BinomialLikelihood(x, 20)
x <- 2
curve(ll)
x <- 15
curve(ll)

With an unfortunate coding of BinomialLikelihood, this gives
the curve for BinomialLikelihood(2, 20) twice!

16 / 19



Toolchains

I A group of problems relates to lack of knowledge about basic
programs in the OS (or in Rtools)

I Compiler, linker, libraries
I (And how to install them when they are not there)
I Makefiles
I Scripts (Perl, shell)

17 / 19



Toolchains

I A group of problems relates to lack of knowledge about basic
programs in the OS (or in Rtools)

I Compiler, linker, libraries
I (And how to install them when they are not there)
I Makefiles
I Scripts (Perl, shell)

17 / 19



Toolchains

I A group of problems relates to lack of knowledge about basic
programs in the OS (or in Rtools)

I Compiler, linker, libraries
I (And how to install them when they are not there)
I Makefiles
I Scripts (Perl, shell)

17 / 19



Toolchains

I A group of problems relates to lack of knowledge about basic
programs in the OS (or in Rtools)

I Compiler, linker, libraries
I (And how to install them when they are not there)
I Makefiles
I Scripts (Perl, shell)

17 / 19



Toolchains

I A group of problems relates to lack of knowledge about basic
programs in the OS (or in Rtools)

I Compiler, linker, libraries
I (And how to install them when they are not there)
I Makefiles
I Scripts (Perl, shell)

17 / 19



So what to do about it?

I We cannot reasonably stuff a major part of theoretical
computer science into a stat/maths curriculum

I Project-based studying lets students satisfy their own needs,
but it has the same issue as teaching: The sudden need for a
large amount of knowledge in s short time

I It may well be the case that we need to rethink topics as part
of a somewhat longer story, e.g. text processing, then lexical
analysis, then parsing, then CAR et al.

I However, some topics, e.g. C programming, are quite clearly
delineated and there is probably no way around teaching them
as an independent (sub-)course

18 / 19



So what to do about it?

I We cannot reasonably stuff a major part of theoretical
computer science into a stat/maths curriculum

I Project-based studying lets students satisfy their own needs,
but it has the same issue as teaching: The sudden need for a
large amount of knowledge in s short time

I It may well be the case that we need to rethink topics as part
of a somewhat longer story, e.g. text processing, then lexical
analysis, then parsing, then CAR et al.

I However, some topics, e.g. C programming, are quite clearly
delineated and there is probably no way around teaching them
as an independent (sub-)course

18 / 19



So what to do about it?

I We cannot reasonably stuff a major part of theoretical
computer science into a stat/maths curriculum

I Project-based studying lets students satisfy their own needs,
but it has the same issue as teaching: The sudden need for a
large amount of knowledge in s short time

I It may well be the case that we need to rethink topics as part
of a somewhat longer story, e.g. text processing, then lexical
analysis, then parsing, then CAR et al.

I However, some topics, e.g. C programming, are quite clearly
delineated and there is probably no way around teaching them
as an independent (sub-)course

18 / 19



So what to do about it?

I We cannot reasonably stuff a major part of theoretical
computer science into a stat/maths curriculum

I Project-based studying lets students satisfy their own needs,
but it has the same issue as teaching: The sudden need for a
large amount of knowledge in s short time

I It may well be the case that we need to rethink topics as part
of a somewhat longer story, e.g. text processing, then lexical
analysis, then parsing, then CAR et al.

I However, some topics, e.g. C programming, are quite clearly
delineated and there is probably no way around teaching them
as an independent (sub-)course

18 / 19



Summmary

I R came out of a “historical coincidence” where a number of
people turned out to have both similar and complementary
abilities, in areas that were not actually being taught in any
systematic fashion

I The challenge at this point in time is to formalize and
systematize these abilities in a way that can be taught at a
general level

I Doing so is essential for the continued development of R and
statistical computing in general

19 / 19



Summmary

I R came out of a “historical coincidence” where a number of
people turned out to have both similar and complementary
abilities, in areas that were not actually being taught in any
systematic fashion

I The challenge at this point in time is to formalize and
systematize these abilities in a way that can be taught at a
general level

I Doing so is essential for the continued development of R and
statistical computing in general

19 / 19



Summmary

I R came out of a “historical coincidence” where a number of
people turned out to have both similar and complementary
abilities, in areas that were not actually being taught in any
systematic fashion

I The challenge at this point in time is to formalize and
systematize these abilities in a way that can be taught at a
general level

I Doing so is essential for the continued development of R and
statistical computing in general

19 / 19


