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MODE ESTIMATION

• The mode is one of the most explicit information about a dataset.

• In [Bi03], a method is proposed to find the mode of mono-modal continuous datasets.

• No extension to this work to our knowledge.

• How to determine the number of modes ?

Here, we propose a graphical tool that helps in the visualization of the distribution of a

continuous dataset.

[Bi03] Bickel, D. (2003). Robust and efficient estimation of the mode of continuous data: The mode as a viable

measure of central tendency, Journal of statistical computation and simulation, vol. 73, Issue 12, pp. 899-912.
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VISUAL ANALYSIS OF CONTINUOUS DATASETS

Visualization provides a good mean to determine the number of modes. Morevoer, it helps in

the crucial steps of understanding the dataset.

Figure 1: There is no problem to visualize the distribution when the population is important enough (con-

stant width/surface histograms, density estimation, etc. ), but when the samples are not numerous enough,

it is more complicated...
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DENSITY ESTIMATION BY KERNEL METHOD

• Convolution of the dataset and a dedi-

cated kernel

• Implemented in the R function

density()

• Choice of the “shape” of the kernel?

(gaussian, epanechnikov, triangular,

cosine, etc.)

• Choice of the kernel size, depending

on the density of the dataset (interval

between items).
Figure 2: The smoothing property of convolu-

tion is used to estimate the density.
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CONVOLUTION IN SIGNAL PROCESSING

Convolutions are widely used in signal processing :

• To identify a pattern (kernel = pattern to find)

• To smooth/filter a signal

• etc.
Figure 3: Sliding window

fourier representation.

In general, it is the basis for time-frequency analysis:

• Convolution in the time domain corresponds to product in Fourier domain

• Fourier analysis applied to sliding windows leads to temporal analysis

• Wavelet theory is based on convolution (sliding windows) analysis at various scales (various

kernel sizes)
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PATTERN RECOGNITION AND SHAPE DESCRIPTION

• Similar problem in Computer Vision :

time-frenquency analysis to decribe the

parametric curve of shape.

• CSS (Curvature Scale Space) descriptors

[Mok92] are amongst the most efficient

shape descriptors (MPEG7).

• CSS descriptors are based on the multi-

scale convolution of a parametric curve with

a gaussian kernel.
Figure 4: [Mok92] The CSS captures the global

distribution of a shape at various scales.

[Mok92] Mokhtarian, F. and Mackworth, A. K.(1992). A Theory of Multiscale, Curvature-Based Shape Representation

for Planar Curves, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 14, Issue 8, pp. 789-805.
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APPLICATION TO STATISTICS

• Performing a multi-scale description of the dataset.

• The dataset is considered as a shape to describe (i.e. as a histogram).

• Kernel : Gaussian (as with the CSS descriptors).

• This idea has already been presented [Gri**] in 2005 in PAMI (the same journal as for

[Mok92]).

• The point was to apply the mean shift algorithm at various scales to find the mode of the

distribution.

• Practically, it corresponds to traverse the plots of the multiscale representation to find a

maximum value.

• It remains unpubished...

[Gri**] Griffin, L. D., Lilholm, M. (unpublished). A Multiscale Mean Shift Algorithm for Mode Estimation. Submitted in

2005 to IEEE Transaction on Pattern Analysis Machine Intelligence.
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APPLICATION TO VISUALIZATION
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DETAILS OF THE CODE

Basically, the algorithm loops on the dentisty() function with various sizes of kernel:

...

# MatConv = matrix of the graphical representation

# It is constructed line by line

for (ibw in (1):(length(axeOrd))) {

mode <- density(data , bw=axeOrd[ibw],

kernel = "gaussian",

n=length(axeAbs),

from=newMinData, to=newMaxData);

valueLine <- mode$y/max(mode$y); # the values are normalized

maxLine <- localMode(valueLine ); # Local max

MatConv[ibw,] <- valueLine + maxLine ; # artifact for representation

}

# display

...
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PARAMETERS

data: Vector of the mono-valued dataset.

percentmargin: Size of the margin, so that the extremal value are not stuck to the border of

the image.

sizeKerMin: Minimal value for the size of the kernel.

sizeKerMax: Maximal value for the size of the kernel.

bwLen: Number of convolutions with a different kernel. It corresponds to the number of lines in

the display.

ImWidth: Width of the display.

jitterOrHist: Flag indicating the representation of the data in the lower part of the graphical

representation. - 0 : automatic 1 : jittered density diagram 2 : histogram.
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PERFORMANCE

• Execution time : between 5 and 10 seconds for a reasonnable number iterations of the

density() function.

• The code is rather light.

• Most of the ressources are necessary for the display.

• It is possible to run it even on large datasets (several hundreds of items) and on which

classical visualization tools are efficient.

• The limits come from the the size of the screen which limits the resolution of the display

rather than the size of the dataset.
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IN A NUTSHELL...

Efficent visualization tool :

• for small sample continuous datasets

• adaptable thanks to several parameters

• computationaly acceptable

Based on :

• Multiscale gaussian convolutions

• Classical shape description methods

• Previous work has attempted to adapt this computer science background to statistics
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OUTLOOK

• Dendrogram-like plot

• Interests for classification

• Future work will be focused on

extracting knowledge from this

“dendrogram”
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QUESTION SESSION

• Thank you for your attention.

• Do you have any question ?
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