Impact Evaluation of Interventions on Child Health in Nepal

Ron Bose PhD
Economist and Technical Officer
3ie
Rennes, France

July 7, 2009
Diarrhea Prevalence in Nepal

Table: 2001 Child Diarrhea Prevalence

<table>
<thead>
<tr>
<th>Response</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>5,086</td>
<td>79</td>
</tr>
<tr>
<td>Yes</td>
<td>1,285</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>6,415</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2001

Table: 2006 Child Diarrhea Prevalence

<table>
<thead>
<tr>
<th>Response</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>4,757</td>
<td>87</td>
</tr>
<tr>
<td>Yes</td>
<td>659</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>5,457</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Access to Drinking Water

2001 Water Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piped Water</td>
<td>485</td>
<td>7</td>
</tr>
<tr>
<td>Public tap</td>
<td>1,825</td>
<td>26</td>
</tr>
<tr>
<td>Pvt. Well</td>
<td>135</td>
<td>2</td>
</tr>
<tr>
<td>Public Well</td>
<td>133</td>
<td>2</td>
</tr>
<tr>
<td>Tubewell</td>
<td>1,288</td>
<td>19</td>
</tr>
<tr>
<td>Public tubewell</td>
<td>1,177</td>
<td>17</td>
</tr>
<tr>
<td>Sprong/kuwa</td>
<td>1,267</td>
<td>18</td>
</tr>
<tr>
<td>River/lake/pond</td>
<td>166</td>
<td>2</td>
</tr>
<tr>
<td>Stone tap/dhara</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>Not resident</td>
<td>393</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>6,929</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2001

2006 Water Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piped Water</td>
<td>513</td>
<td>9</td>
</tr>
<tr>
<td>Public tap</td>
<td>1,361</td>
<td>24</td>
</tr>
<tr>
<td>Pvt. well</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Public well</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>Tubewell</td>
<td>2,044</td>
<td>35</td>
</tr>
<tr>
<td>Protected spring</td>
<td>144</td>
<td>2</td>
</tr>
<tr>
<td>Unprotected spring</td>
<td>640</td>
<td>11</td>
</tr>
<tr>
<td>River/dam/pond</td>
<td>376</td>
<td>7</td>
</tr>
<tr>
<td>Stone tap/dhara</td>
<td>205</td>
<td>4</td>
</tr>
<tr>
<td>Not dejure resident</td>
<td>318</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5,783</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Access to Sanitation

Table: 2001 Toilet Facility

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush Toilet</td>
<td>511</td>
<td>7</td>
</tr>
<tr>
<td>Trad. Pit Toilet</td>
<td>971</td>
<td>14</td>
</tr>
<tr>
<td>Vent. Pit latrine</td>
<td>116</td>
<td>2</td>
</tr>
<tr>
<td>No facility</td>
<td>4,940</td>
<td>71</td>
</tr>
<tr>
<td>Not resident</td>
<td>393</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>6,931</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2001

Table: 2006 Toilet Facility

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush Toilet</td>
<td>1192</td>
<td>21</td>
</tr>
<tr>
<td>Trad Pit Toilet</td>
<td>909</td>
<td>15</td>
</tr>
<tr>
<td>Vent. Pit Latrine</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>No facility</td>
<td>3,250</td>
<td>56</td>
</tr>
<tr>
<td>Not dejure resident</td>
<td>318</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5,782</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Diarrhea Prevalence By Child Age in Months

1
Mean = 24.1 Months
Median = 21 Months

2
Mean = 23.13 Months
Median = 19 Months
Diarrhea Prevalence: Access to ”Improved Sanitation”

<table>
<thead>
<tr>
<th>Imp. Toilet</th>
<th>Diarrhea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111</td>
<td>1131</td>
</tr>
<tr>
<td>0</td>
<td>548</td>
<td>3993</td>
</tr>
</tbody>
</table>

Source: DHS 2006

2

\[
\text{Odds Ratio} = \frac{\frac{P_1}{1-P_1}}{\frac{P_0}{1-P_0}} = 1.46
\]
Naive Comparison: Access to "Improved Sanitation"

Table: Naive Comparison: Household Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>(Untreated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipewtr. in house?</td>
<td>23.2%</td>
<td>5%</td>
</tr>
<tr>
<td>Rural</td>
<td>52%</td>
<td>84%</td>
</tr>
<tr>
<td>Head Hd has sec. or more ed.</td>
<td>56%</td>
<td>30%</td>
</tr>
<tr>
<td>House Floor = Cement</td>
<td>29%</td>
<td>3%</td>
</tr>
<tr>
<td>Richest Quintile</td>
<td>54%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Source: DHS 2006
1

Fundamental problem with program evaluation is that it is physically impossible to observe counterfactual

2

Rubin (1974) gave us the model of identification of causal effects, which relies on the notion of a *synthetic counterfactual* for each observation. The model is based on work by Neyman (1923,1935) and Fisher (1918,1925); see also Tukey (1954), Wold (1956), Cochran (1965), Pearl (2000), and Rosenbaum (2002).
Matching

- Basic idea of matching is to compare outcome of treated and untreated individuals with similar x's and then aggregating across x's to get population average treatment effect. Advantage to regression approach is that it does not assume x's linearly effect outcomes.

- Propensity score matching (PSM)

$$\Delta^M = \frac{1}{N_T} \sum_{i \in (D=1)} [y_{1,i} - \sum_j w(i, j)y_{0,j}]$$

is to estimate the propensity score from the data, and then use that estimate to weight treatment effects for each propensity score accordingly to arrive at average treatment effect.
Comparision of Groups: Before versus After Matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>(Untreated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipewtr. in house?</td>
<td>23.2%</td>
<td>15%</td>
</tr>
<tr>
<td>Rural</td>
<td>53%</td>
<td>58%</td>
</tr>
<tr>
<td>Head Hd has sec. or more ed.</td>
<td>45%</td>
<td>41%</td>
</tr>
<tr>
<td>House Floor= Cement</td>
<td>30%</td>
<td>33%</td>
</tr>
<tr>
<td>Richest Quintile</td>
<td>52%</td>
<td>52%</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Impact Evaluation: Kernel Matching Results

1

Table: 2006 Results for Intervention on Diarrhea

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>(Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>0.091</td>
<td>0.122</td>
<td>-.032</td>
<td>(0.01)**</td>
</tr>
<tr>
<td>Matched</td>
<td>0.091</td>
<td>.143</td>
<td>-0.0524</td>
<td>(0.02)**</td>
</tr>
</tbody>
</table>

Note: ”Treatment” = Improved Sanitation

2

\[
\frac{\frac{P_1}{1-P_1}}{\frac{P_0}{1-P_0}} = 1.66
\]
Impact Evaluation: Kernel Matching Results

Table: 2006 Results for Intervention on Diarrhea for Boys

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment (Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>0.091</td>
<td>0.132</td>
<td>-.041</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>Matched</td>
<td>0.091</td>
<td>.151</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.035)</td>
</tr>
</tbody>
</table>

Note: ”Treatment” = Improved Sanitation

Table: 2006 Results for Intervention on Diarrhea for Girls

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment (Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>0.089</td>
<td>0.111</td>
<td>-.022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>Matched</td>
<td>0.089</td>
<td>.1428</td>
<td>-0.0521</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Note: ”Treatment” = Improved Sanitation
Diarrhea Incidence Among Very Young Children

Table: 2001 Child Diarrhea Prevalence Among ≤ 24 Months

<table>
<thead>
<tr>
<th>Response</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1,911</td>
<td>72.25</td>
</tr>
<tr>
<td>Yes</td>
<td>733</td>
<td>27.7</td>
</tr>
<tr>
<td>Total</td>
<td>2,645</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2001

Table: 2006 Child Diarrhea Prevalence Among ≤ 24 Months

<table>
<thead>
<tr>
<th>Response</th>
<th>Number</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1,744</td>
<td>81.27</td>
</tr>
<tr>
<td>Yes</td>
<td>402</td>
<td>18.7</td>
</tr>
<tr>
<td>Total</td>
<td>2,146</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Diarrhea Incidence Among Very Young Children

Table: 2006 Results for Intervention for Children ≤ 24 Months

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment</th>
<th>(Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>0.151</td>
<td>0.203</td>
<td>-.052</td>
<td>(0.02)**</td>
</tr>
<tr>
<td>Matched</td>
<td>0.151</td>
<td>.261</td>
<td>-0.11</td>
<td>(0.05)**</td>
</tr>
</tbody>
</table>

Note: ”Treatment” = Improved Sanitation

\[
\text{Odds Ratio} = \frac{\frac{P_1}{1-P_1}}{\frac{P_0}{1-P_0}} = 1.75
\]
Nutritional Status and Diarrhea Incidence
Results

Impact Evaluation: Nutritional Health and Sanitation

Table: 2006 Results for **Height for Age Scores**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment (Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>1884.365 1268.91</td>
<td>615.45</td>
<td>(75.44)**</td>
</tr>
<tr>
<td>Matched</td>
<td>1884.365 1621.09</td>
<td>263.27</td>
<td>(165.97)↑</td>
</tr>
</tbody>
</table>

Note: “Treatment” = Improved Sanitation

Table: 2006 Results for **Weight For Age Scores**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment (Control)</th>
<th>Δ</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>1523.95 984.97</td>
<td>539</td>
<td>(64.78)**</td>
</tr>
<tr>
<td>Matched</td>
<td>1523.95 1224.52</td>
<td>299.42</td>
<td>(142.12)**</td>
</tr>
</tbody>
</table>

Note: “Treatment” = Improved Sanitation
Post-Estimation: Propensity Score Distribution
Table: Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pseudo-R2</th>
<th>(LR χ^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched</td>
<td>0.47</td>
<td>2703.05</td>
</tr>
<tr>
<td>Matched</td>
<td>0.041</td>
<td>154.24</td>
</tr>
</tbody>
</table>

Source: DHS 2006

Table: Abs(Standardized Bias)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>(Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Matching</td>
<td>28%</td>
<td>16%</td>
</tr>
<tr>
<td>After Matching</td>
<td>6.7%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Source: DHS 2006
Post-Estimation: Rosenbaum Bounds

Table: Mantel-Haenszel bounds for Outcome = Diarrhea

<table>
<thead>
<tr>
<th>Γ</th>
<th>Q_{MH+}</th>
<th>Q_{MH-}</th>
<th>p_{MH+}</th>
<th>p_{MH-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ = 1</td>
<td>3.05</td>
<td>3.05</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>Γ = 1.25</td>
<td>5.12</td>
<td>1.01</td>
<td>0</td>
<td>.15</td>
</tr>
<tr>
<td>Γ = 1.50</td>
<td>6.85</td>
<td>.53</td>
<td>0</td>
<td>.29</td>
</tr>
<tr>
<td>Γ = 1.75</td>
<td>8.34</td>
<td>1.93</td>
<td>0</td>
<td>.02</td>
</tr>
<tr>
<td>Γ = 2.0</td>
<td>9.66</td>
<td>3.16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: MH Bounds using STATA 10

Note: Γ = 1 ≈ No "Hidden" Heterogeneity
Note: Q_{mh+} : Mantel-Haenszel statistic
Note: Q_{mh-} : Mantel-Haenszel statistic
Note: p_{mh+} : significance level