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Motivation

Mayday — An extensible visualization platform
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@ Basic data structure is a numeric matrix
@ columns are observations, rows are “features” of interest
e Aim is to find (full-width) submatrices with common features



Motivation

Mayday — An extensible visualization platform

@ Cross-platform: Written in Java

@ Structured display of submatrices

@ Plugin-based — fast integration of new methods

@ Interactive visualizations, different views are linked

@ Visualizations can be enhanced by meta-data

@ Focus: visual data exploration and hypothesis generation
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One big deficit

No live programmers’ access to the data.
— “Power-users” often need to move data to R and back




Design Requirements

Requirements

Integration of an interactive @ shell into Mayday
@ Live access to Mayday’s data
@ Efficient data management

@ Memory-safe data manipulation

@ Objects behave as much like real @ objects as possible
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Self-made interface

e.g. using pipes
-+ no process limit
+ could be interactive

— slow
— aLOT of work
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Possible solutions

Self-made interface RServe / RSJava JRI + RJava

e.g. using pipes using sockets R embedded in JVM
+ no process limit + no process limit — only one R instance
+ could be interactive + no direct dependency + shared memory
— Java accessing R + R accessing Java
— slow — no interactive session + interactivity built in
— aLOT of work ) — still lots of work + very fast )

Short overview: JRI+RJava
@ Using Java objects in R: rdava
@ Embedding R in Java: JRI
@ One process (JVM), memory shared between VM and R
@ R event loop waiting for input from Java callbacks
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Some thoughts on memory management

@ no copying needed
@ very fast

@ uncontrolled access
@ GC issues
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BES ] Memory management

Some thoughts on memory management

Copied objects

@ no copying needed @ slow

@ very fast @ memory-intensive

@ uncontrolled access @ controlled access

@ GC issues @ hard too keep in sync

“Controlled references”

@ Leightweight S3 objects, containing

o Identifier (integer), used by Java as object reference
o Type/Class (string), used by R to resolve function calls

@ copy data as needed, still very fast
@ Java program decides what to expose to R
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BES ] Hiding complexity

Thoughts on user-friendliness

Fetching a value from a HashMap<String, Integer>

e JAVA
int ret = hashMap.get ("Key")
@ native rdJava
key <- .jnew( "Ljava/lang/String;", "Key" );
ret <- .jcall( hashMap,
"Ljava/lang/Object; ",

" get " ,

.jcast (key, "Ljava/lang/Object")
ret <- .jcast( ret, "Ljava/lang/Integer" );
ret <- .jcall( ret, "I", "intValue" );

@ Our aim for RLink
ret <- hashMap[["Key"]]
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Mayday (Java) interactive R session

VM code (Java) R functions (R)
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Operations of interest

@ All objects Overloading depends
e summary, print on context
o List-like objects = We do it dynamically

e length

@ names, names«

o [[ (select) and [[< (replace)
o [ (sublist)

e lapply, sapply

@ Matrix-like objects

@ nrow, ncol, dim
e rownames, colnames, rownames«—, colnames«—
o [ (submatrix) and [« (replace)

e apply
@ ... and object-specific methods



Implementation

Integration into Mayday

Mayday’s R terminal

(i) Mayday R Terminal (=03

History

> randomNumbers <- rnarm(1000)
= length{randomNumbers])

[1] 1000

> randomMean <- mean(r

rs)

Ll |

" liengthrandamiumbers)
|randemMean <- meanirandomNumbers)

randomNumbers <- mormil 000)
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Visible R objects
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is ready
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@ Multi-line editor
e syntax highlighting
e auto-completion
e brace matching

@ History

e multi-line entries
e storable

@ Live list of user objects




Evaluation Example session

Example

Simulated data:
@ 3000 rows (probes), 100 columns
@ 1000 probes with random oscillations
@ 1000 probes each for two different frequencies
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Evaluation Example session

Testhata <- mayday [["Example®]]; # <<-- get reference Trom Mayday
submatrix =- Testhata[["Complete DataSet"]] # «<c-- select submatrix reference
clusterByFFT¢ submatrix , 50 2;

clusterByFFT <- functiony probelist , minsize=10 ,
parentMane="FFT Clustering", prefix="Strongest:" » {

T <- probelist{,T] # ¢ extract submatrix

# perform TFT on each row-wector, Tind strongest factor
T. fTre-Mod ¢t apply (f,1, TFUp0)
T.fftrank=-t{apply¢-f. o[, -11,1, rank, ties="first"}}
. fftrankhest<-apply {f. fftrank,1,

function (i) which{i==13+1}

ds <- getDataSety probelist J;
group =- addProbelistGroup {ds, parentMame, probelist); # «<<-- cCreate hierarchical stucture

Tactors <- unique(T.TTrrankhest);
clusters <- sapply{factors, functiongfactor) {
cluster_i =- names{which {T. fftrankbest==Tactor}
it {length{cluster_i)=minsiza) {
nane =- paste/prefix, factor)
return {addProbelistyds, name, cluster_i, group)}; # <z-- add a new cluster to Mayday

returny-13;
2

# color the results nicely

clusters <- clusters[clusters=-1];

calTPluginy d=s, "PAS.core.RecolorProbelists", clusters »; # «<c-- call another Mayday plugin
invisible(};



Evaluation Example session

Example (2)

Testhata <- mayday [["Example®]]; # <<-- get reference Trom Mayday
submatrix =- Testhata[["Complete DataSet"]] # <c-- select submatrix reference
clusterByFFT¢ submatrix , 50 2;

clusterByFFT <- functiony probelist , minsize=10 ,
parentMane="FFT Clustering", prefix="Strongest:" » {

T <- probelist{,T] # ¢ extract submatrix

# perform TFT on each row-wector, Tind strongest factor
T. fTre-Mod ¢t apply (f,1, TFUp0)
T.fftrank=-t{apply¢-f. o[, -11,1, rank, ties="first"}}
. fftrankhest<-apply {f. fftrank,1,

function (i) which{i==13+1}

ds <- getDataSety probelist J;
group =- addProbelistGroup {ds, parentMame, probelist); # «<<-- cCreate hierarchical stucture

Tactors <- unique(T.TTrrankhest);
clusters <- sapply{factors, functiongfactor) {
cluster_i =- names{which {T. fftrankbest==Tactor}
it {length{cluster_i)=minsiza) {
nane =- paste/prefix, factor)
return {addProbelistyds, name, cluster_i, group)}; # <z-- add a new cluster to Mayday

returny-13;
2

# color the results nicely

clusters <- clusters[clusters=-1];

calTPluginy d=s, "PAS.core.RecolorProbelists", clusters »; # <c-- call another Mayday plugin
invisible(};



Evaluation Example session

Example (3)

ﬂ Complete Dataset [2] 5000
FFT Clustering  [211926

2
m Strongest:4 1020

[ Strongest:6 906
(.

ﬂ global 3000
« Global This is the global probe list.
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Evaluation Alternative usage scenario

Further wishes

@ separation of Java and @ at the process level
e parallel @ instances

@ network transparency

@ complex R calculations on dedicated machines




Evaluation Alternative usage scenario

Further wishes

@ separation of Java and @ at the process level
e parallel @ instances
@ network transparency

@ complex R calculations on dedicated machines

Possible solution
Adding an RMI layer — Very few changes needed.




Evaluation Conclusion

Summary

@ Integration of @® and Mayday

@ Wrapped Java objects behave like native R objects
@ Controlled interface between Mayday and R

@ Mode of communication can be changed easily

@ Very user-friendly R shell

Mayday is freely available at
http://microarray-analysis.org/
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Qutlook
Directions for future work

What we can do
@ Generic framework for object wrapping
@ Register R functions into Mayday’s plugin manager

@ Make more Mayday plugins available in R

@ use R to script Mayday




Qutlook
Directions for future work

What we can do
@ Generic framework for object wrapping
@ Register R functions into Mayday’s plugin manager
@ Make more Mayday plugins available in R

@ use R to script Mayday

Nice to have
@ Multithreaded R core

@ More crash-resistant JRI
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Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

X'is primitive
Xis an S3 method Xis an S4 method |

4 4

new S3 method: X.C() | new S4 method for C J

No previous definition for X }

We automatically determine which is needed
= functions are built dynamically
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Limitations

Shared process
@ limits memory on 32 bit systems
@ Makes JVM vulnerable to crashes in R code
@ only one instance of @® at a time
@ blocking, no parallel execution

Installation
@ Requires C and Java compilers, R headers
@ Superuser privileges needed
@ Can't easily be automated
@ So far not working on MacOS with 64 bit Java
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RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java) interactive R session

S | aruming RLinkolent

RMI Communication

Multiple parallel instances
Unlimited memory

More stable

Installation is much simpler
More work to start a session
— Somewhat slower

+ + + +
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