Mayday RLink — The best of both worlds

Florian Battke, Stephan Symons, Kay Nieselt

battke@informatik.uni-tuebingen.de

July 8, 2009
EBERHARD KARLS 2 T .
UNIVERSITAT r‘ » I Em
TUBINGEN il
nnnnnnnnnnnnnnnnnnnnnnnnnnnnn PN EER R

Qutline
Outline

0 Motivation
@ Design
© Implementation

© Evaluation

e Outlook

Motivation

Mayday — An extensible visualization platform

Mayday

(G0 FIS9=SoP < = [E[<]

Mayday DataSet Probelist Window Help

= ProbeLists in F138-50P
Dataet Properties

22778 probes E Final Selection (Pearson, dia 0.25, min 4, regvar L, coding) (5] 265
2
ZElcxmenimerty » Created 31.05.2009 15:38:51

Meta Information

Hierarchical Clustering (UPGMA, Euclidean) 12

by annatated Objects
by Path
[10 Groups
[Timepaines 1
¢ £ migen
[y Level 2 annotation 1752
[y Level 0 anntation 1752
§ [sangen
[y sanger gescription (773
[y sanger Category 17361
[E) F199-SOP <6> Profil _ |0 | x|

Plot Probelists Selection View Visualizer

hromosomeOvery

+ Hierarchical Clustering: 32 taxa

Early drop plus 17

1)

« Dynamic: [Prabe similar to SCOEAQ70650 0006348 _a1]

] a7 12
[F199-SOP <6> Profile Plot (Hierarchical Clu[_ | o |[x |

W5, | GESMRE 13| | Pt Probeusts Seiection vien Visualizer

aTsopa 16

F.l

aTsopiz 24

Qrsopt0 20

QTsop11 24

LI

Move up

Expression value

Time Paint

Time Point

@ Basic data structure is a numeric matrix
@ columns are observations, rows are “features” of interest
e Aim is to find (full-width) submatrices with common features

Motivation

Mayday — An extensible visualization platform

@ Cross-platform: Written in Java

@ Structured display of submatrices

@ Plugin-based — fast integration of new methods

@ Interactive visualizations, different views are linked

@ Visualizations can be enhanced by meta-data

@ Focus: visual data exploration and hypothesis generation

4

Motivation

Mayday — An extensible visualization platform

@ Cross-platform: Written in Java

@ Structured display of submatrices

@ Plugin-based — fast integration of new methods

@ Interactive visualizations, different views are linked

@ Visualizations can be enhanced by meta-data

@ Focus: visual data exploration and hypothesis generation

4

One big deficit

No live programmers’ access to the data.
— “Power-users” often need to move data to R and back

Design Requirements

Requirements

Integration of an interactive @ shell into Mayday
@ Live access to Mayday’s data
@ Efficient data management

@ Memory-safe data manipulation

@ Objects behave as much like real @ objects as possible

Design Possible solutions

Possible solutions

Self-made interface

e.g. using pipes
-+ no process limit
+ could be interactive

— slow
— aLOT of work

Possible solutions

e.g. using pipes
no process limit
could be interactive

slow
a LOT of work

Design Possible solutions

Self-made interface RServe / RSJava

using sockets

no process limit

no direct dependency
Java accessing R

no interactive session
still lots of work

BES] Possible solutions

Possible solutions

Self-made interface RServe / RSJava JRI + RJava

e.g. using pipes using sockets R embedded in JVM
-+ no process limit -+ no process limit — only one R instance
+ could be interactive + no direct dependency + shared memory
— Java accessing R + R accessing Java
— slow — no interactive session + interactivity built in
— aLOT of work) — still lots of work) + very fast)

BES] Possible solutions

Possible solutions

Self-made interface RServe / RSJava JRI + RJava

e.g. using pipes using sockets R embedded in JVM
+ no process limit + no process limit — only one R instance
+ could be interactive + no direct dependency + shared memory
— Java accessing R + R accessing Java
— slow — no interactive session + interactivity built in
— aLOT of work) — still lots of work + very fast)

Short overview: JRI+RJava
@ Using Java objects in R: rdava
@ Embedding R in Java: JRI
@ One process (JVM), memory shared between VM and R
@ R event loop waiting for input from Java callbacks

Design Memory management

Some thoughts on memory management

@ no copying needed
@ very fast

@ uncontrolled access
@ GC issues

BES] Memory management

Some thoughts on memory management

Copied objects

@ no copying needed @ slow
@ very fast @ memory-intensive
@ uncontrolled access @ controlled access

@ GC issues @ hard too keep in sync

BES] Memory management

Some thoughts on memory management

Copied objects

@ no copying needed @ slow

@ very fast @ memory-intensive

@ uncontrolled access @ controlled access

@ GC issues @ hard too keep in sync

“Controlled references”

@ Leightweight S3 objects, containing

o Identifier (integer), used by Java as object reference
o Type/Class (string), used by R to resolve function calls

@ copy data as needed, still very fast
@ Java program decides what to expose to R

4

BES] Hiding complexity

Thoughts on user-friendliness

Fetching a value from a HashMap<String, Integer>

e JAVA
int ret = hashMap.get ("Key")
@ native rdJava
key <- .jnew("Ljava/lang/String;", "Key");
ret <- .jcall(hashMap,
"Ljava/lang/Object; ",

" get " ,

.jcast (key, "Ljava/lang/Object")
ret <- .jcast(ret, "Ljava/lang/Integer");
ret <- .jcall(ret, "I", "intValue");

@ Our aim for RLink
ret <- hashMap[["Key"]]

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

VM code (Java) R functions (R)

One object “ref” is shared between Mayday and R

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

VM code (Java) R functions (R)

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"1]1 with class “rlink.nm” and id “5”

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)
VM code (Java) R functions (R)

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"1]1 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

VM code (Java)

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"1]1 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.Jjcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

R functions (R)

VM memory mgr, GC (Java) R library (native), MM, GC
Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"11 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.jcall (ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

© rJava/JRI transfer

Implementation Command translation and data flow

Command translation and data flow

interactive R session

VM code (Java) R functions (R)

One object “ref” is shared between Mayday and R

Example: (int) ret « hashMap[["Key"]] withclass “rlink.hm” and id “5”

@ R resolves operator [[for class “rlink.nm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.Jjcall (ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

© rJava/JRI transfer

© ref.hmget (5, "Key") resolves “5” to an actual object o,
calls o.get ("Key") and packages the return value

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

R functions (R)

VM memory mgr, GC (Java) R library (native), MM, GC
Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"11 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.jcall (ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

© rJava/JRI transfer

@ ref.hmget (5, "Key") resolves “5” to an actual object o,
calls o.get ("Key") and packages the return value

© rJava/JRlI transfer

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java) interactive R session

VM code (Java)

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"1]1 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.Jjcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

© rJava/JRI transfer

© ref.hmget (5, "Key") resolves “5” to an actual object o,
calls o.get ("Key") and packages the return value

© rJava/JRI transfer

e [[.rlink.hm(hashMap, "Key") unpacks the return value
and uses rdava functions to convert to a native type (or another “wrapped” object)

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)
VM code (Java) R functions (R)

One object “ref” is shared between Mayday and R

Example: (int) ret <« hashMap[["Key"1]1 with class “rlink.nm” and id “5”

@ R resolves operator [[for class “rlink.hm”

@ ([.rlink.hm(hashMap, "Key") uses rJava:
.Jjcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

© rJava/JRI transfer

© ref.hmget (5, "Key") resolves “5” to an actual object o,
calls o.get ("Key") and packages the return value

© rJava/JRI transfer

e [[.rlink.hm(hashMap, "Key") unpacks the return value
and uses rdava functions to convert to a native type (or another “wrapped” object)

Implementation Minimum set of operators

Operations of interest

@ All objects
e summary, print

Implementation Minimum set of operators

Operations of interest

@ All objects
e summary, print

o List-like objects
e length
@ names, names«
o [[(select) and [[< (replace)
o [(sublist)
o lapply, sapply

Implementation Minimum set of operators

Operations of interest

@ All objects
e summary, print

o List-like objects

e length

@ names, names«

o [[(select) and [[< (replace)
o [(sublist)

o lapply, sapply

@ Matrix-like objects

@ nrow, ncol, dim
e rownames, colnames, rownames«—, colnames«—
o [(submatrix) and [« (replace)

e apply

Implementation Minimum set of operators

Operations of interest

@ All objects
e summary, print

o List-like objects

e length

@ names, names«

o [[(select) and [[< (replace)
o [(sublist)

e lapply, sapply

@ Matrix-like objects

@ nrow, ncol, dim
e rownames, colnames, rownames«—, colnames«—
o [(submatrix) and [« (replace)

e apply
@ ... and object-specific methods

Implementation Minimum set of operators

Operations of interest

@ All objects Overloading depends
e summary, print on context
o List-like objects = We do it dynamically

e length

@ names, names«

o [[(select) and [[< (replace)
o [(sublist)

e lapply, sapply

@ Matrix-like objects

@ nrow, ncol, dim
e rownames, colnames, rownames«—, colnames«—
o [(submatrix) and [« (replace)

e apply
@ ... and object-specific methods

Implementation

Integration into Mayday

Mayday’s R terminal

(i) Mayday R Terminal (=03

History

> randomNumbers <- rnarm(1000)
= length{randomNumbers])

[1] 1000

> randomMean <- mean(r

rs)

Ll |

" liengthrandamiumbers)
|randemMean <- meanirandomNumbers)

randomNumbers <- mormil 000)

ax

Visible R objects

mayday

is ready

randonfiizan
Humbers|

@ Multi-line editor
e syntax highlighting
e auto-completion
e brace matching

@ History

e multi-line entries
e storable

@ Live list of user objects

Evaluation Example session

Example

Simulated data:
@ 3000 rows (probes), 100 columns
@ 1000 probes with random oscillations
@ 1000 probes each for two different frequencies

007
0,05 A
oos 4§ i

\”*M
¥

o0+ AL

Evaluation Example session

Testhata <- mayday [["Example®]]; # <<-- get reference Trom Mayday
submatrix =- Testhata[["Complete DataSet"]] # «<c-- select submatrix reference
clusterByFFT¢ submatrix , 50 2;

clusterByFFT <- functiony probelist , minsize=10 ,
parentMane="FFT Clustering", prefix="Strongest:" » {

T <- probelist{,T] # ¢ extract submatrix

perform TFT on each row-wector, Tind strongest factor
T. fTre-Mod ¢t apply (f,1, TFUp0)
T.fftrank=-t{apply¢-f. o[, -11,1, rank, ties="first"}}
. fftrankhest<-apply {f. fftrank,1,

function (i) which{i==13+1}

ds <- getDataSety probelist J;
group =- addProbelistGroup {ds, parentMame, probelist); # «<<-- cCreate hierarchical stucture

Tactors <- unique(T.TTrrankhest);
clusters <- sapply{factors, functiongfactor) {
cluster_i =- names{which {T. fftrankbest==Tactor}
it {length{cluster_i)=minsiza) {
nane =- paste/prefix, factor)
return {addProbelistyds, name, cluster_i, group)}; # <z-- add a new cluster to Mayday

returny-13;
2

color the results nicely

clusters <- clusters[clusters=-1];

calTPluginy d=s, "PAS.core.RecolorProbelists", clusters »; # «<c-- call another Mayday plugin
invisible(};

Evaluation Example session

Example (2)

Testhata <- mayday [["Example®]]; # <<-- get reference Trom Mayday
submatrix =- Testhata[["Complete DataSet"]] # <c-- select submatrix reference
clusterByFFT¢ submatrix , 50 2;

clusterByFFT <- functiony probelist , minsize=10 ,
parentMane="FFT Clustering", prefix="Strongest:" » {

T <- probelist{,T] # ¢ extract submatrix

perform TFT on each row-wector, Tind strongest factor
T. fTre-Mod ¢t apply (f,1, TFUp0)
T.fftrank=-t{apply¢-f. o[, -11,1, rank, ties="first"}}
. fftrankhest<-apply {f. fftrank,1,

function (i) which{i==13+1}

ds <- getDataSety probelist J;
group =- addProbelistGroup {ds, parentMame, probelist); # «<<-- cCreate hierarchical stucture

Tactors <- unique(T.TTrrankhest);
clusters <- sapply{factors, functiongfactor) {
cluster_i =- names{which {T. fftrankbest==Tactor}
it {length{cluster_i)=minsiza) {
nane =- paste/prefix, factor)
return {addProbelistyds, name, cluster_i, group)}; # <z-- add a new cluster to Mayday

returny-13;
2

color the results nicely

clusters <- clusters[clusters=-1];

calTPluginy d=s, "PAS.core.RecolorProbelists", clusters »; # <c-- call another Mayday plugin
invisible(};

Evaluation Example session

Example (3)

ﬂ Complete Dataset [2] 5000
FFT Clustering [211926

2
m Strongest:4 1020

[Strongest:6 906
(.

ﬂ global 3000
« Global This is the global probe list.

4l L

\\“
| |
L

100

Evaluation Alternative usage scenario

Further wishes

@ separation of Java and @ at the process level
e parallel @ instances

@ network transparency

@ complex R calculations on dedicated machines

Evaluation Alternative usage scenario

Further wishes

@ separation of Java and @ at the process level
e parallel @ instances
@ network transparency

@ complex R calculations on dedicated machines

Possible solution
Adding an RMI layer — Very few changes needed.

Evaluation Conclusion

Summary

@ Integration of @® and Mayday

@ Wrapped Java objects behave like native R objects
@ Controlled interface between Mayday and R

@ Mode of communication can be changed easily

@ Very user-friendly R shell

Mayday is freely available at
http://microarray-analysis.org/

http://microarray-analysis.org/

Qutlook
Directions for future work

What we can do
@ Generic framework for object wrapping
@ Register R functions into Mayday’s plugin manager

@ Make more Mayday plugins available in R

@ use R to script Mayday

Qutlook
Directions for future work

What we can do
@ Generic framework for object wrapping
@ Register R functions into Mayday’s plugin manager
@ Make more Mayday plugins available in R

@ use R to script Mayday

Nice to have
@ Multithreaded R core

@ More crash-resistant JRI

Acknowledgements
Acknowledgements

The Mayday team
The @ developers

The rdava/JRI developers

The Federal Ministry of Education and Research

* Federal Ministry
of Education
and Research

Mayday RLink — The best of both worlds

Florian Battke, Stephan Symons, Kay Nieselt

battke@informatik.uni-tuebingen.de

http://microarray-analysis.org/

EBERHARD KARLS » 1]
UNIVERSITAT I ‘ » I]?m
TUBINGEN Oy oo I
oo g

nnnnnnnnnnnnnnnnnnnnnnnnnnnn
SO

http://microarray-analysis.org/

Additional slides
Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

Additional slides
Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

X'is primitive
X is an S3 method

4

new S3 method: X.C() J

No previous definition for X }

Additional slides
Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

X'is primitive
Xis an S3 method Xis an S4 method |

4 4

new S3 method: X.C()) new S4 method for C J

No previous definition for X }

Additional slides
Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

X'is primitive
Xis an S3 method Xis an S4 method |

4 4

new S3 method: X.C() | new S4 method for C J

No previous definition for X }

We automatically determine which is needed
= functions are built dynamically

Additional slides Limitations

Limitations

Shared process
@ limits memory on 32 bit systems
@ Makes JVM vulnerable to crashes in R code
@ only one instance of @® at a time
@ blocking, no parallel execution

Additional slides Limitations

Limitations

Shared process
@ limits memory on 32 bit systems
@ Makes JVM vulnerable to crashes in R code
@ only one instance of @® at a time
@ blocking, no parallel execution

Installation
@ Requires C and Java compilers, R headers
@ Superuser privileges needed
@ Can't easily be automated
@ So far not working on MacOS with 64 bit Java

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java) interactive R session

S | aruming RLinkolent

RMI Communication

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java) interactive R session

S | aruming RLinkolent

RMI Communication

Multiple parallel instances
Unlimited memory

More stable

Installation is much simpler
More work to start a session
— Somewhat slower

+ + + +

	Outline

