
Mayday RLink – The best of both worlds

Florian Battke, Stephan Symons, Kay Nieselt

battke@informatik.uni-tuebingen.de

July 8, 2009

1

Outline

Outline

1 Motivation

2 Design

3 Implementation

4 Evaluation

5 Outlook

2

Motivation

Mayday – An extensible visualization platform

Basic data structure is a numeric matrix
columns are observations, rows are “features” of interest
Aim is to find (full-width) submatrices with common features

3

Motivation

Mayday – An extensible visualization platform

Strengths

Cross-platform: Written in Java
Structured display of submatrices
Plugin-based→ fast integration of new methods
Interactive visualizations, different views are linked
Visualizations can be enhanced by meta-data
Focus: visual data exploration and hypothesis generation

One big deficit
No live programmers’ access to the data.
→ “Power-users” often need to move data to R and back

4

Motivation

Mayday – An extensible visualization platform

Strengths

Cross-platform: Written in Java
Structured display of submatrices
Plugin-based→ fast integration of new methods
Interactive visualizations, different views are linked
Visualizations can be enhanced by meta-data
Focus: visual data exploration and hypothesis generation

One big deficit
No live programmers’ access to the data.
→ “Power-users” often need to move data to R and back

4

Design Requirements

Requirements

Integration of an interactive shell into Mayday

Live access to Mayday’s data

Efficient data management

Memory-safe data manipulation

Objects behave as much like real objects as possible

5

Design Possible solutions

Possible solutions

Self-made interface
e.g. using pipes

+ no process limit

+ could be interactive

− slow

− a LOT of work

RServe / RSJava
using sockets

+ no process limit

+ no direct dependency

− Java accessing R

− no interactive session

− still lots of work

JRI + RJava
R embedded in JVM

− only one R instance

+ shared memory

+ R accessing Java

+ interactivity built in

+ very fast

Short overview: JRI+RJava
Using Java objects in R: rJava
Embedding R in Java: JRI
One process (JVM), memory shared between VM and R
R event loop waiting for input from Java callbacks

6

Design Possible solutions

Possible solutions

Self-made interface
e.g. using pipes

+ no process limit

+ could be interactive

− slow

− a LOT of work

RServe / RSJava
using sockets

+ no process limit

+ no direct dependency

− Java accessing R

− no interactive session

− still lots of work

JRI + RJava
R embedded in JVM

− only one R instance

+ shared memory

+ R accessing Java

+ interactivity built in

+ very fast

Short overview: JRI+RJava
Using Java objects in R: rJava
Embedding R in Java: JRI
One process (JVM), memory shared between VM and R
R event loop waiting for input from Java callbacks

6

Design Possible solutions

Possible solutions

Self-made interface
e.g. using pipes

+ no process limit

+ could be interactive

− slow

− a LOT of work

RServe / RSJava
using sockets

+ no process limit

+ no direct dependency

− Java accessing R

− no interactive session

− still lots of work

JRI + RJava
R embedded in JVM

− only one R instance

+ shared memory

+ R accessing Java

+ interactivity built in

+ very fast

Short overview: JRI+RJava
Using Java objects in R: rJava
Embedding R in Java: JRI
One process (JVM), memory shared between VM and R
R event loop waiting for input from Java callbacks

6

Design Possible solutions

Possible solutions

Self-made interface
e.g. using pipes

+ no process limit

+ could be interactive

− slow

− a LOT of work

RServe / RSJava
using sockets

+ no process limit

+ no direct dependency

− Java accessing R

− no interactive session

− still lots of work

JRI + RJava
R embedded in JVM

− only one R instance

+ shared memory

+ R accessing Java

+ interactivity built in

+ very fast

Short overview: JRI+RJava
Using Java objects in R: rJava
Embedding R in Java: JRI
One process (JVM), memory shared between VM and R
R event loop waiting for input from Java callbacks

6

Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7

Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7

Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7

Design Hiding complexity

Thoughts on user-friendliness

Fetching a value from a HashMap<String, Integer>

JAVA
int ret = hashMap.get("Key")

native rJava
key <- .jnew("Ljava/lang/String;", "Key");
ret <- .jcall(hashMap,

"Ljava/lang/Object;",
"get",
.jcast(key, "Ljava/lang/Object"));

ret <- .jcast(ret, "Ljava/lang/Integer");
ret <- .jcall(ret, "I", "intValue");

Our aim for RLink
ret <- hashMap[["Key"]]

8

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9

Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[(select) and [[← (replace)
[(sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[(submatrix) and [← (replace)
apply

... and object-specific methods

10

Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[(select) and [[← (replace)
[(sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[(submatrix) and [← (replace)
apply

... and object-specific methods

10

Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[(select) and [[← (replace)
[(sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[(submatrix) and [← (replace)
apply

... and object-specific methods

10

Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[(select) and [[← (replace)
[(sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[(submatrix) and [← (replace)
apply

... and object-specific methods

10

Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[(select) and [[← (replace)
[(sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[(submatrix) and [← (replace)
apply

... and object-specific methods

10

Implementation Integration into Mayday

Mayday’s R terminal

Multi-line editor
syntax highlighting
auto-completion
brace matching

History
multi-line entries
storable

Live list of user objects

11

Evaluation Example session

Example

Simulated data:
3000 rows (probes), 100 columns
1000 probes with random oscillations
1000 probes each for two different frequencies

12

Evaluation Example session

Example (2)

13

Evaluation Example session

Example (2)

13

Evaluation Example session

Example (3)

14

Evaluation Alternative usage scenario

Further wishes

separation of Java and at the process level

parallel instances

network transparency

complex R calculations on dedicated machines

Possible solution
Adding an RMI layer→ Very few changes needed.

15

Evaluation Alternative usage scenario

Further wishes

separation of Java and at the process level

parallel instances

network transparency

complex R calculations on dedicated machines

Possible solution
Adding an RMI layer→ Very few changes needed.

15

Evaluation Conclusion

Summary

Integration of and Mayday

Wrapped Java objects behave like native R objects

Controlled interface between Mayday and R

Mode of communication can be changed easily

Very user-friendly R shell

Mayday is freely available at
http://microarray-analysis.org/

16

http://microarray-analysis.org/

Outlook

Directions for future work

What we can do

Generic framework for object wrapping

Register R functions into Mayday’s plugin manager

Make more Mayday plugins available in R

use R to script Mayday

Nice to have

Multithreaded R core

More crash-resistant JRI

17

Outlook

Directions for future work

What we can do

Generic framework for object wrapping

Register R functions into Mayday’s plugin manager

Make more Mayday plugins available in R

use R to script Mayday

Nice to have

Multithreaded R core

More crash-resistant JRI

17

Acknowledgements

Acknowledgements

The Mayday team

The developers

The rJava/JRI developers

The Federal Ministry of Education and Research

18

Mayday RLink – The best of both worlds

Florian Battke, Stephan Symons, Kay Nieselt

battke@informatik.uni-tuebingen.de

http://microarray-analysis.org/

19

http://microarray-analysis.org/

Additional slides

Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

No previous definition for X
X is primitive

X is an S3 method

⇓
new S3 method: X.C()

X is an S4 method

⇓
new S4 method for C

We automatically determine which is needed
⇒ functions are built dynamically

20

Additional slides

Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

No previous definition for X
X is primitive

X is an S3 method

⇓
new S3 method: X.C()

X is an S4 method

⇓
new S4 method for C

We automatically determine which is needed
⇒ functions are built dynamically

20

Additional slides

Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

No previous definition for X
X is primitive

X is an S3 method

⇓
new S3 method: X.C()

X is an S4 method

⇓
new S4 method for C

We automatically determine which is needed
⇒ functions are built dynamically

20

Additional slides

Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

No previous definition for X
X is primitive

X is an S3 method

⇓
new S3 method: X.C()

X is an S4 method

⇓
new S4 method for C

We automatically determine which is needed
⇒ functions are built dynamically

20

Additional slides Limitations

Limitations

Shared process
limits memory on 32 bit systems
Makes JVM vulnerable to crashes in R code
only one instance of at a time
blocking, no parallel execution

Installation
Requires C and Java compilers, R headers
Superuser privileges needed
Can’t easily be automated
So far not working on MacOS with 64 bit Java

21

Additional slides Limitations

Limitations

Shared process
limits memory on 32 bit systems
Makes JVM vulnerable to crashes in R code
only one instance of at a time
blocking, no parallel execution

Installation
Requires C and Java compilers, R headers
Superuser privileges needed
Can’t easily be automated
So far not working on MacOS with 64 bit Java

21

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java)
running RLink server

interactive R session

rJava running RLink client

RMI Communication

Java VM core (native) R library (native), MM, GC

+ Multiple parallel instances

+ Unlimited memory

+ More stable

+ Installation is much simpler

− More work to start a session

− Somewhat slower

22

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java)
running RLink server

interactive R session

rJava running RLink client

RMI Communication

Java VM core (native) R library (native), MM, GC

+ Multiple parallel instances

+ Unlimited memory

+ More stable

+ Installation is much simpler

− More work to start a session

− Somewhat slower

22

Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java)
running RLink server

interactive R session

rJava running RLink client

RMI Communication

Java VM core (native) R library (native), MM, GC

+ Multiple parallel instances

+ Unlimited memory

+ More stable

+ Installation is much simpler

− More work to start a session

− Somewhat slower

22

	Outline

