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Motivation

Mayday – An extensible visualization platform

Basic data structure is a numeric matrix
columns are observations, rows are “features” of interest
Aim is to find (full-width) submatrices with common features

3



Motivation

Mayday – An extensible visualization platform

Strengths

Cross-platform: Written in Java
Structured display of submatrices
Plugin-based→ fast integration of new methods
Interactive visualizations, different views are linked
Visualizations can be enhanced by meta-data
Focus: visual data exploration and hypothesis generation

One big deficit
No live programmers’ access to the data.
→ “Power-users” often need to move data to R and back
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Design Requirements

Requirements

Integration of an interactive shell into Mayday

Live access to Mayday’s data

Efficient data management

Memory-safe data manipulation

Objects behave as much like real objects as possible
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Design Possible solutions

Possible solutions

Self-made interface
e.g. using pipes

+ no process limit

+ could be interactive

− slow

− a LOT of work

RServe / RSJava
using sockets

+ no process limit

+ no direct dependency

− Java accessing R

− no interactive session

− still lots of work

JRI + RJava
R embedded in JVM

− only one R instance

+ shared memory

+ R accessing Java

+ interactivity built in

+ very fast

Short overview: JRI+RJava
Using Java objects in R: rJava
Embedding R in Java: JRI
One process (JVM), memory shared between VM and R
R event loop waiting for input from Java callbacks
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Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7



Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7



Design Memory management

Some thoughts on memory management

Pointers
no copying needed
very fast
uncontrolled access
GC issues

Copied objects
slow
memory-intensive
controlled access
hard too keep in sync

“Controlled references”
Leightweight S3 objects, containing

Identifier (integer), used by Java as object reference
Type/Class (string), used by R to resolve function calls

copy data as needed, still very fast
Java program decides what to expose to R

7



Design Hiding complexity

Thoughts on user-friendliness

Fetching a value from a HashMap<String, Integer>

JAVA
int ret = hashMap.get("Key")

native rJava
key <- .jnew( "Ljava/lang/String;", "Key" );
ret <- .jcall( hashMap,

"Ljava/lang/Object;",
"get",
.jcast(key, "Ljava/lang/Object") );

ret <- .jcast( ret, "Ljava/lang/Integer" );
ret <- .jcall( ret, "I", "intValue" );

Our aim for RLink
ret <- hashMap[["Key"]]
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Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Command translation and data flow

Command translation and data flow

Mayday (Java)

VM code (Java)

VM memory mgr, GC (Java)

interactive R session

R functions (R)

R library (native), MM, GC

Java VM core (native), JNI Communication

One object “ref” is shared between Mayday and R

Example: (int) ret ← hashMap[["Key"]] with class “rlink.hm” and id “5”

1 R resolves operator [[ for class “rlink.hm”
2 [[.rlink.hm(hashMap, "Key") uses rJava:

.jcall(ref, "hmget", 5, .jnew("Ljava/lang/String","Key"))

3 rJava/JRI transfer
4 ref.hmget(5,"Key") resolves “5” to an actual object o,

calls o.get("Key") and packages the return value
5 rJava/JRI transfer
6 [[.rlink.hm(hashMap, "Key") unpacks the return value

and uses rJava functions to convert to a native type (or another “wrapped” object)

9



Implementation Minimum set of operators

Operations of interest

Overloading depends
on context
⇒We do it dynamically

All objects
summary, print

List-like objects
length
names, names←
[[ (select) and [[← (replace)
[ (sublist)
lapply, sapply

Matrix-like objects
nrow, ncol, dim
rownames, colnames, rownames←, colnames←
[ (submatrix) and [← (replace)
apply

... and object-specific methods
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Implementation Integration into Mayday

Mayday’s R terminal

Multi-line editor
syntax highlighting
auto-completion
brace matching

History
multi-line entries
storable

Live list of user objects
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Evaluation Example session

Example

Simulated data:
3000 rows (probes), 100 columns
1000 probes with random oscillations
1000 probes each for two different frequencies
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Evaluation Example session

Example (2)
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Evaluation Example session

Example (2)
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Evaluation Example session

Example (3)
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Evaluation Alternative usage scenario

Further wishes

separation of Java and at the process level

parallel instances

network transparency

complex R calculations on dedicated machines

Possible solution
Adding an RMI layer→ Very few changes needed.

15



Evaluation Alternative usage scenario

Further wishes

separation of Java and at the process level

parallel instances

network transparency

complex R calculations on dedicated machines

Possible solution
Adding an RMI layer→ Very few changes needed.

15



Evaluation Conclusion

Summary

Integration of and Mayday

Wrapped Java objects behave like native R objects

Controlled interface between Mayday and R

Mode of communication can be changed easily

Very user-friendly R shell

Mayday is freely available at
http://microarray-analysis.org/
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Outlook

Directions for future work

What we can do

Generic framework for object wrapping

Register R functions into Mayday’s plugin manager

Make more Mayday plugins available in R

use R to script Mayday

Nice to have

Multithreaded R core

More crash-resistant JRI
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Additional slides

Operator overloading

Creating overloaded method “X” for objects of class “C”
depends on existing definitions of “X”.

No previous definition for X
X is primitive

X is an S3 method

⇓
new S3 method: X.C()

X is an S4 method

⇓
new S4 method for C

We automatically determine which is needed
⇒ functions are built dynamically
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Additional slides Limitations

Limitations

Shared process
limits memory on 32 bit systems
Makes JVM vulnerable to crashes in R code
only one instance of at a time
blocking, no parallel execution

Installation
Requires C and Java compilers, R headers
Superuser privileges needed
Can’t easily be automated
So far not working on MacOS with 64 bit Java
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Additional slides Limitations

RMI Connections

We can easily replace the connection between Mayday and R.

Mayday (Java)
running RLink server

interactive R session

rJava running RLink client

RMI Communication

Java VM core (native) R library (native), MM, GC

+ Multiple parallel instances

+ Unlimited memory

+ More stable

+ Installation is much simpler

− More work to start a session

− Somewhat slower
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