| | ntroduction l

Power is one of the more important and least covered topias imtroduc-
tory Statistics course. This poster shows how power, evén mon-central
distributions, can be covered for students in a basic 8tsisourse.

| Prerequisite Concepts l

Once a student understands just a few conceptgydiver of a test can be
Introduced.

e o = P(type | erron = level of significance= P(rejectHy|H is true) =
P(acceptH|Hy is true).
e 5 = P(type Il erron = P(fail to rejectHy| H is false =
P(acceptHy| H is true).
e Glven a composite alternative hypothesis: 6 € O,
Power () = P(rejectHy|H is false = P(acceptH|H;) = 1 — 3(0),
where((60) is the probability of a type Il error at a giveh

Normal Distribution and Power l

Computing the power for a particular alternative or findihg power func-
tion when working with normal distributions is covered in shdexts and is
easily done witlR.

Problem: Given a normal distribution with unknown mearand known stan-
dard deviationr = 3, for a test of the null hypothesiH, : 1 = 40 versus the
alternative hypothesif/; : ;1 = 48 using anx level of 0.05

A. With a sample of size one, compute the probability of a t\@eror.

B. Graph thePower (1) for values ofu from 25 to 55 for testing a two tailed
alternative hypothesis using samples of size one and nine.

Answers:

A. To find the the probability of a type Il error, use tRecommands
> cv <- gnorm(0.95, 40, 3)

> typellerror <- pnormcv, 48, 3)

> typellerror

[ 1] 0.1534347

N(40, 3)

N(48, 3)

P(type Il error) = 0.153 P(type | error) = 0.05

30.00 40.00 44.93 48.00 60.00

B. To graph thePower () for values ofu from 25 to 55 for testing a two
tailed alternative hypothesis using samples of size onenamel use theR
commands:

> mu <- seq(25, 55, 0.01)

> power ONE <- pnornm(qgnorn. 025,40, 3), nu, 3) +

+ pnorm_gnorm 0. 975, 40, 3), nu, 3, | ower =FALSE)

> power NI NE <- pnorn{gnormn.025,40,1), nu, 1) +
+ pnorm_gnorm 0. 975, 40, 1), nu, 1, | ower =FALSE)

> plot(mnmu, powerONE, type="I", |Iwd=2, col ="blue",
+ ylimec(0,1.1))

> |1 nes(mu, power NI NE, col ="Dblue", |wd=2)
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| Binomial Distribution and Power l

So that students do not think that all power can be computeshiiyying a
central sampling distribution either to the right or left, introadupower using
the binomial distribution.

Problem: SupposeX ~ Bin(n = 14,60 = 0.5). Determine thePower (0 =
0.85) when testingH, : ¢ = 0.5 versusH; : 6 > 0.5 with o = 0.0897 (a
decision to reject the null hypothesis wh&n> 9).

Answer: By graphing aX ~ Bin(n = 14,0 = 0.5) and aX ~ Bin(n =
14,0 = 0.85), as shown below, it is very easy for the students to visudiize
Power (¢ = 0.85) with an asymmetric distribution.

To find thePower (§ = 0.85), use theR commands

> PONER <- sum(dbi non(10: 14, 14, 0.85))
> POVNER
[ 1] 0. 9532597

X~Bin(14, 0.85)

P(X =x)

X~Bin(14, 0.5)
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With a little creativity, students can write a few lines ofdexto create a graph
like the one below showing tHeéower (6).
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| Central and Non-central ¢ Distribution l

Simulation is an effective way to reinforce the concept ohmpling distribu-
tion.

Central ¢ Distribution
Example: Have students simulate the quantity
X
S/\/n
when sampling from a normal distribution. Compare the glembf the sim-
ulated sampling distribution versus the theoretical glesof at,,_;.

tc

TheR simulation of 50,000 samples of size 16 from a normal distrdm with
mean of 100 and standard deviation of 20 is in the online scrip

A density histogram of the quantity tc with a superimposenstg of at
along with the theoretical and simulated quantiles sugidpessimulation is a
guite accurate representation ofjadistribution:

t15
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Non-central ¢ Distribution

To introduce the non-central distribution with non-centrality parameter
(17 ~), have the students simulate the quantity

( ?10 — ?20>

tNC =

(1)

1, 1

5p 7 g

The online script takes: = 50,000 samples fromV (u; = 120,01 = 20) of
sizen; = 16 and fromN (9 = 100, o9 = 20) of sizeng = 25.

The simulated values are displayed in a density histograsmaamon-central
t with non-centrality parameter = 3.123475 Is superimposed over the simu-
lated values.

t39, 0 ¢
39, 3.123475
A
4 \
/ \
i v

The simulated values are counted to complbgver(u; — pug = 20) for
Hy : g — po = 0versusHy : p; — puo # 0 at thea = 0.05 level (critical
values shown in red above).

# [ (tnc > tg.975.30) U (thc < t0.025.39) |

™m
This agrees well with the theoretical power of the test (0)36

= (.862

Power (p1 — po = 20) =

Power could also be approximated using the simulation a@mbrevhen the
variances for the two populations are unknown and unequeathri@hs-Fisher
problem).

‘ The Non-centrality Parameter |

For the non-centrality parameter, and thet statistic,t,

—1/2 L ~1/2
1 1 1 1

(2)
t measures the statistical differences betweersdh®wle means and is used
to measure the statistical differences betweerptipilation means.

Squaring both quantities i12), gives
(Yie—Y )2(l+l)_1
le 20) \ni " ny ~ MSrtreatment

F=t= _
S]% MSError

and

o(1 1\ ! |
(11 — p2) (nT + n—z) _ SSHypothesiéPopulation

_ 2
A=9" = 2 2

o) o)

whereSSyypothesiéPopulation is the sum of squares for treatments obtained

by replacingy |, With /11, Y5e With 115, andY ee with A2

When ) is the ratio of SSyypothesiPopulation) to o2, the calculation of\
is straightforward: TheSSypothesisPopulation) will always be the sum of
squares formula for th&, being tested.

<

This method of computing extends to any hypothesis the user would Iiké\ tq

test. It is not limited merely to the equality of treatmentans nor to equal
sample sizes.

J

To compute the power of the test when— us = 20, 01 = 09 = 20, ny = 16,
andno = 25 using a two-sided alternative witla = 0.05, compute the non-
centrality parameter to be

—1/2
(1 = 1) (7 + ) (120 - 100) (7 + 3%

T - - 20

:) -——:l//ZZ
= 3.123475.

ldeas for Introducing Power In the Service Statistics Ceurs

The power of the test is then

Power (117 — o = 20) = P (RejectHy| Hy)
=P ((T < toz/Z;n1+n2—2) ‘T ~ t21+n2—2;7) +

IP) ((T > tl—Od/Q;nl—l—ng—Z) |T ™~ t;‘(zl—l—ng—Z;w)

=P((t30.3.123475 < 10.025:30)) + P((t39.3 123475 > 10.975,30))
=P((t30.3.193475 < —2.022691)) + P((39.3.193475 > 2.022691)) = 0.8612027

‘ R commands |

To find Power(p1; — w9 = 20) with R, one can use the standard commands
pt () andqgt () as follows:

> cvl <- qt(0.025, 39)

> cvu <- gt (0.975, 39)

> Power <- pt(cvl, 39, 3.123475) +

+ pt(cvu, 39, 3.123475, |ower.tail=FALSE)
> Power

[1] 0.8612027

The functionpower . t . t est () will return power for one- and two-sample
tests (when each sample is the same size)paweer . anova. t est () will
return the power for one-way analysis of variance problerhemthe sam-
ple sizes are equal. It would not be hard to modify the curcende to either
function to accommodate unequal sample sizes as specss.cas

. Non-central F' Distribution l

Suppose the true mean grade for University A's studentgyusiching meth-
ods 1, 2, 3, and 4 have means of 71, 73, 75, and 80 with a commaodast
deviation ofc = 12. If ny = 11, no = 13, n3 = 10, andny = 12, determine the
probability a difference among the means will be detectaagus = 0.05.

. 4 _
_ SSHypotheSIS: D i—1 Mi(fhie — Mu)Q

A 52 52
L1(71 — 74.78)% + 13(73 — T4.78) + 10(75 — 74.78)? + 12(80 — 74.78)?
B 122
— 3.65157

> Power <- 1 - pf(qgf(0.95, 3, 42), 4, 42, 3.65157)
> Power
[ 1] 0. 2204405

F3 42
Power()\ = 3.65)

fo.05 3, 42

F3 42 3.65

| Conclusion l

With appropriate examples, power can be covered ®itih an introductory
statistics course. When students use simulation, theyagaintuitive under-
standing of power, even for non-central distributions.

| References l

Ugarte, M. D., Militino, A. F., and Arnholt A. T. 200&8robability and Satis-

ticswith R. Chapman & Hall/CRC. Boca Raton, FL.

TANn R script for all graphs in the poster is available at
http://www1.appstate.edu/ arnholta/UseR2009
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