
Motivation Measuring Speedup Parallel Out of Mem Automation

Introduction to High-Performance R
UseR! 2008 Tutorial

Dirk Eddelbuettel

TU Dortmund
August 11, 2008

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Motivation

What describes our current situation?

I Moore’s Law: Computers keep getting faster and faster.
I But at the same time out datasets get bigger and bigger.
I And our research ambitions get bigger and bigger too.
I So we’re still waiting and waiting . . .

Hence: A need for higher / faster / further / ... computing with R.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Motivation cont.

Roadmap: We will start by measuring how we are doing before
looking at ways to improve our computing performance.

We will look at vectorisation, a key method for speed improvements,
as well as various ways to compile code.

We will discuss ways to get more things done at the same time by
using simple parallel computing approaches.

Next, we look at ways to compute with R beyond the memory limits
imposed by the R engine.

Last but not least we look at ways to automate running R code.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Outline

Motivation

Measuring and profiling

Faster: Vectorisation and Compiled Code

Parallel execution: Explicitly and Implicitly

Out-of-memory processing

Automation and scripting

Summary

Appendix

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

Profiling

We need to know where our code spends the time it takes to compute
our tasks. Measuring is critical.
R already provides the basic tools for performance analysis.

I The system.time function for simple measurements.
I The Rprof function for profiling R code.
I The Rprofmem function for profiling R memory usage.
I The profr package can visualize Rprof data.

The chapter Tidying and profiling R code in the R Extensions manual
is a good first source for documentation.

Simon has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

Lastly, we can also profile compiled code.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://r.research.att.com/benchmarks/

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

RProf example

In this example (taken from the manual), the two calls to Rprof turn
profiling on and off, respectively.
library(MASS); library(boot)
storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer, \

start = c(b=29.401, c=2.2183))
st <- cbind(stormer, fit=fitted(storm.fm))
storm.bf <- function(rs, i) {

st$Time <- st$fit + rs[i]
tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st, \

start = coef(storm.fm))
tmpmgetAllPars()

}
rs <- scale(resid(storm.fm), scale = FALSE) # remove mean
Rprof("boot.out")
storm.boot <- boot(rs, storm.bf, R = 4999) # pretty slow
Rprof(NULL)

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

RProf example cont.

We can run the example via either one of
cat profilingExample.R | R --no-save ## N = 4999
cat profilingSmall.R | R --no-save ## N = 99

We can then analyse the output using two different ways. First,
directly from R into an R object:
data <- summaryRprof("boot.out")
print(str(data))

Second, from the command-line (on systems having Perl)
R CMD Prof boot.out | less

Third, profr can directly profile, evaluate, and optionally plot, an
expression. Note that we reduce N here:
plot(pr <- profr(storm.boot <- boot(rs, storm.bf, R = 99)))

In this example, the code is already very efficient and no ’smoking
gun’ reveals itself for further improvement.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

profr example

The profr function can be very useful for its quick visualisation of
the RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;for (i in 1:N) s <- s + i; s}
ival <- 1/5000
Rprof("/tmp/sillysum.out", interval=ival)
a <- sillysum(1e6); Rprof(NULL)
plot(parse_rprof("/tmp/sillysum.out", interval=ival))

and a more efficient solution where we use a larger N:
efficientsum <- function(N) { s <- sum(seq(1,N)); s }
ival <- 1/5000
Rprof("/tmp/effsum.out", interval=ival)
a <- efficientsum(1e7); Rprof(NULL)
plot(parse_rprof("/tmp/effsum.out", interval=ival))

We can run the complete example via
cat rprofChartExample.R | R --no-save

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

profr example cont.

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
5

1.
0

1.
5

2.
0

2.
5

Profile of inefficient summation

time

le
ve

l

sillysum

+

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

1
2

3
4

Profile of efficient summation

time

le
ve

l

efficientsum

seq sum

seq.default

:

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

RProfmem example

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue calls to
Rprofmem to start and stop logging to a file as we did for Rprof:

Rprofmem("/tmp/boot.memprof", threshold=1000)
storm.boot <- boot(rs, storm.bf, R = 4999)
Rprofmem(NULL)

Looking at the results files shows, and we quote, that apart from
some initial and final work in ‘boot’ there are no vector allocations
over 1000 bytes.

We also mention in passing that the tracemem function can log when
copies of a (presumably large) object are being made. Details are in
section 3.3.3 of the R Extensions manual.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

Profiling compiled code

Profiling compiled code typically entails rebuilding the binary and
libraries with the -gp compiler option. In the case of R, a complete
rebuild is required.
Add-on tools like valgrind and kcachegrind can be helpful.

Two other options are mentioned in the R Extensions manual section
of profiling for Linux.
First, sprof, part of the C library, can profile shared libraries.
Second, the add-on package oprofile provides a daemon that has
to be started (stopped) when profiling data collection is to start (end).
A third possibility is the use of the Google Perftools package which
we will illustrate.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

Profiling with Google Perftools

The Google Perftools package provides four modes of performance
analysis / improvement:

I a thread-caching malloc (memory allocator),
I a heap-checking facility,
I a heap-profiling facility and
I cpu profiling.

Here, we will focus on the last feature.

There are two possible modes of running code with the cpu profile.

The preferred approach is to link with -lprofiler. Alternatively,
one can dynamically pre-load the profiler library.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation RProf RProfmem Profiling

Profiling with Google Perftools

turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R

We can then analyse the profiling output in the file. The profiler
(renamed from pprof to google-pprof on Debian) has a large
number of options. Here just use two different formats:
show text output
google-pprof --cum --text /usr/bin/r /tmp/rprof.log | less

or analyse call graph using gv
google-pprof --gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools.sh runs the complete example.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (i in 1:N) s <- s + i; return(s) }
> system.time(print(sillysum(1e7)))

[1] 5e+13
user system elapsed

11.513 0.048 11.560
>

> system.time(print(sum(as.numeric(seq(1,1e7)))))

[1] 5e+13
user system elapsed
0.104 0.084 0.187

>

Replacing the loop yielded a gain of a factor of more than 100. Hence
it pays to know the corpus of available functions.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Vectorisation cont.

A more interesting example is provided in a case study on the Ra
(c.f. next section) site and taken from the S Programming book:

Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, . . ., 9. This
amounts to finding all possible values of ac − bd where a, b,
c and d are digits.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.milbo.users.sonic.net/ra/dist-of-dets8.html

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Vectorisation cont.

The brute-force solution is using explicit loops over all combinations:
dd.for.c <- function() {

val <- NULL
for (a in 0:9) for (b in 0:9) for (d in 0:9) for (e in 0:9)

val <- c(val, a*b - d*e)
table(val)

}

The naive time is
> mean(replicate(10, system.time(dd.for.c())["elapsed"]))

[1] 0.3003

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Vectorisation cont.

The case study discusses two important points that bear repeating:
I pre-allocating space helps with performance:
val <- double(10000)

I switching to faster functions can help too as tabulate
outperforms table.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Vectorisation cont.

However, by far the largest improvement comes from eliminating the
four loop with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "*")
val <- outer(val, val, "-")
tabulate(val)

}

The time for the most efficient solution is:
> mean(replicate(10, system.time(dd.fast.tabulate())["elapsed"]))

[1] 0.0014

Both examples can be run via the script dd.naive.r.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Accelerated R with just-in-time compilation

Stephen Milborrow recently released a set of patches to R that allow
’just-in-time compilation’ of loops and arithmetic expression. Together
with his jit package on CRAN, this can be used to obtain speedups
of standard R operations.

Our trivial example run in Ra:
library(jit)
sillysum <- function(N) { jit(1); s <- 0; \

for (i in 1:N) s <- s + i; return(s) }

> system.time(print(sillysum(1e7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five – not bad at all.

Ra and jit are still pretty young and not widely deployed yet. They
are available in Debian and should be in the next Ubuntu release.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Optimised Blas

Blas (’basic linear algebra subprogram’, see Wikipedia) are standard
building block for linear algebra. Highly-optimised libraries exist that
can provide considerable performance gains.

R can be built using so-called optimised Blas such as Atlas (’free’),
Goto (not ’free’), or those from Intel or AMD; see the ’R Admin’
manual, section A.3 ’Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one can
simply install on of the atlas-base-* packages.

An example from the old README.Atlas, running with R 2.7.0,
follows:

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://en.wikipedia.org/wiki/Blas
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Optimised Blas cont.

with Atlas
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10, system.time(crossprod(mm))["elapsed"]))

[1] 3.8465

with basic. non-optmised Blas,
ie after dpkg --purge atlas3-base libatlas3gf-base
> mm <- matrix(rnorm(4*10^6), ncol = 2*10^3)
> mean(replicate(10, system.time(crossprod(mm))["elapsed"]))

[1] 8.9776

So for pure linear algebra problems, we may get an improvement by a
factor of two or larger by using binary code that is optimised for the
cpu class. This is likely to be more pronounced on multi-cpu
machines.

Higher increases are possibly by ’tuning’ the library, see the Atlas
documentation.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

From Blas to GPUs.

The next frontier for hardware acceleration is computing on GPUs
(’graphics programming units’, see Wikipedia).

GPUs are essentially hardware that is optimised for both I/O and
floating point operations, leading to much faster code execution than
standard CPUs on floating-point operations.

Development kits are available as e.g Nvidia CUDA, and some initial
work on integration with R has been undertaken but there appear to
no easy-to-install and easy-to-use kits for R – yet.

So this provides a perfect intro for the next subsection on compilation.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://en.wikipedia.org/wiki/GPU
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation), compiled subroutines or accelerated
libraries, the most direct speed gain is to switch to compiled code.

This section covers two possible approaches:
I inline for automated wrapping of simple expression
I Rcpp for easing the interface between R and C++

Another different approach is to keep the core logic ’outside’ but to
embed R into the application. There is some documentation in the ’R
Extensions’ manual, and packages like RApache or littler offer
concrete examples. This does however require a greater familiarity
with R internals.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: The Basics

R offers several functions to access compiled code: .C and
.Fortran as well as .Call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and .Fortran
are older and simpler, but more restrictive in the long run.

The canonical example in the documentation is the convolution
function:

1 vo id convolve (double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab)
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5

6 for (i = 0 ; i < nab ; i ++)
7 ab [i] = 0 . 0 ;
8 for (i = 0 ; i < ∗na ; i ++)
9 for (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function (a , b)
2 .C(" convolve " ,
3 as . double (a) ,
4 as . integer (length (a)) ,
5 as . double (b) ,
6 as . integer (length (b)) ,
7 ab = double (length (a) + length (b) − 1)) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source code, and
then calls R to run the example.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: The Basics cont.

Using .Call, the example becomes

1 #include <R. h>
2 #include <Rdefines . h>
3

4 SEXP convolve2 (SEXP a , SEXP b)
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT(a = AS_NUMERIC(a)) ;
11 PROTECT(b = AS_NUMERIC(b)) ;
12 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
13 PROTECT(ab = NEW_NUMERIC(nab)) ;
14 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
15 xab = NUMERIC_POINTER(ab) ;
16 for (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
17 for (i = 0 ; i < na ; i ++)
18 for (j = 0 ; j < nb ; j ++) xab [i + j] += xa [i] ∗ xb [j] ;
19 UNPROTECT(3) ;
20 return (ab) ;
21 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: The Basics cont.

Now the call simply becomes easier using the function name and the
vector arguments as all handling is done at the C/C++ level:
conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source code,
and then calls R to run the example.

In summary, we see that
I there are different entry points
I using different calling conventions
I leading to code that may need to do more work at the lower level.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the function
cfunction that can wrap Fortan, C or C++ code. Taking the first
example:

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i)∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by placing
the resulting dynamically-loadable object code in the per-session
temporary directory used by R.

We can run the example via
cat inline.Fortan.R | R -no-save.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: inline cont.

inline defaults to using the .Call() interface:
1 ## Use of . Ca l l convent ion wi th C code
2 ## Mu l t yp l y i ng each image i n a stack wi th a 2D Gaussian a t a given p o s i t i o n
3 code <− "
4 SEXP res ;
5 i n t np ro tec t = 0 , nx , ny , nz , x , y ;
6 PROTECT(res = Rf_ d u p l i c a te (a)) ; np ro tec t ++;
7 nx = INTEGER(GET_DIM(a)) [0] ;
8 ny = INTEGER(GET_DIM(a)) [1] ;
9 nz = INTEGER(GET_DIM(a)) [2] ;

10 double sigma2 = REAL(s) [0] ∗ REAL(s) [0] , d2 ;
11 double cx = REAL(cent re) [0] , cy = REAL(cent re) [1] , ∗data , ∗rda ta ;
12 f o r (i n t im = 0; im < nz ; im++) {
13 data = &(REAL(a) [im∗nx∗ny]) ; rda ta = &(REAL(res) [im∗nx∗ny]) ;
14 f o r (x = 0 ; x < nx ; x++)
15 f o r (y = 0 ; y < ny ; y++) {
16 d2 = (x−cx)∗(x−cx) + (y−cy)∗(y−cy) ;
17 rda ta [x + y∗nx] = data [x + y∗nx] ∗ exp(−d2 / sigma2) ;
18 }
19 }
20 UNPROTECT(np ro tec t) ;
21 r e t u r n res ;
22 "
23 funx <− c f u nc t i o n (s igna tu re (a=" ar ray " , s= " numeric " , cent re=" numeric ") , code)
24
25 x <− ar ray (r u n i f (50∗50) , c (50 ,50 ,1))
26 res <− funx (a=x , s=10 , cent re=c (25 ,15)) ## ac tua l c a l l o f compiled f u n c t i o n
27 i f (i n t e r a c t i v e ()) image (res [, , 1])

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: inline cont.

We can revisit the earlier distribution of determinants example.
If we keep it very simple and pre-allocate the temporary vector in R ,
the example becomes

1 code <− "
2 i f (isNumeric (vec)) {
3 i n t ∗pv = INTEGER(vec) ;
4 i n t n = leng th (vec) ;
5 i f (n = 10000) {
6 i n t i = 0 ;
7 f o r (i n t a = 0; a < 9; a++)
8 f o r (i n t b = 0; b < 9; b++)
9 f o r (i n t c = 0 ; c < 9; c++)

10 f o r (i n t d = 0; d < 9; d++)
11 pv [i ++] = a∗b − c∗d ;
12 }
13 }
14 r e t u r n (vec) ;
15 "
16

17 funx <− c f un c t i o n (s igna tu re (vec=" numeric ") , code)

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: inline cont.

We can use the inlined function in new function to be timed:
dd.inline <- function() {

x <- integer(10000)
res <- funx(vec=x)
tabulate(res)

}
> mean(replicate(100, system.time(dd.inline())["elapsed"]))

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates memory in
R and analysis the result in R it still more than twice as fast than the
previous best solution.

The script dd.inline.r runs this example.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

Compiled Code: RCpp

RCpp makes it easier to interface C++ and R code.

Using the .Call interface, we can use features of the C++ language
to automate the tedious bits of the macro-based C-level interface to R.

One major advantage of using .Call is that vectors (or matrices)
can be passed directly between R and C++ without the need for
explicit passing of dimension arguments. And by using the C++ class
layers, we do not need to directly manipulate the SEXP objects.

So let us rewrite the ’distribution of determinant’ example one more
time.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

RCpp example

The simplest version can be set up as follows:

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when there i s noth ing to be re turned .
5
6 RcppVector< int > vec (v) ; / / vec parameter viewed as vec to r o f doubles .
7 i n t n = vec . s ize () , i = 0 ;
8
9 for (i n t a = 0; a < 9; a++)

10 for (i n t b = 0; b < 9; b++)
11 for (i n t c = 0; c < 9; c++)
12 for (i n t d = 0; d < 9; d++)
13 vec (i ++) = a∗b − c∗d ;
14
15 RcppResultSet rs ; / / Bu i ld r e s u l t se t to be re turned as a l i s t to R.
16 rs . add (" vec " , vec) ; / / vec as named element w i th name ’ vec ’
17 r l = rs . ge tRe tu rnL i s t () ; / / Get the l i s t to be re turned to R.
18
19 return r l ;
20 }

but it is actually preferable to use the exception-handling feature of
C++ as in the slightly longer next version.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

RCpp example cont.

1 #include <Rcpp . hpp>
2
3 RcppExport SEXP dd_ rcpp (SEXP v) {
4 SEXP r l = R_ Ni lVa lue ; / / Use th is when there i s noth ing to be re turned .
5 char∗ exceptionMesg = NULL ; / / msg var i n case of e r r o r
6
7 t ry {
8 RcppVector< int > vec (v) ; / / vec parameter viewed as vec to r o f doubles .
9 i n t n = vec . s ize () , i = 0 ;

10 for (i n t a = 0; a < 9; a++)
11 for (i n t b = 0; b < 9; b++)
12 for (i n t c = 0; c < 9; c++)
13 for (i n t d = 0; d < 9; d++)
14 vec (i ++) = a∗b − c∗d ;
15
16 RcppResultSet rs ; / / Bu i ld r e s u l t se t to be re turned as a l i s t to R.
17 rs . add (" vec " , vec) ; / / vec as named element w i th name ’ vec ’
18 r l = rs . ge tRe tu rnL i s t () ; / / Get the l i s t to be re turned to R.
19 } catch (s td : : except ion& ex) {
20 exceptionMesg = copyMessageToR (ex . what ()) ;
21 } catch (. . .) {
22 exceptionMesg = copyMessageToR (" unknown reason ") ;
23 }
24
25 i f (exceptionMesg ! = NULL)
26 e r r o r (exceptionMesg) ;
27
28 return r l ;
29 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

RCpp example cont.

We can create a shared library from the source file as follows:
$ R CMD SHLIB dd.rcpp.cpp -lrcpp; strip dd.rcpp.so

g++ -I/usr/share/R/include -fpic -g -O2 -c dd.rcpp.cpp -o dd.rcpp.o
g++ -shared -o dd.rcpp.so dd.rcpp.o -lrcpp -L/usr/lib/R/lib -lR

Note the extra link instruction -lrcpp as well as the strip
command to remove extraneous debugging information.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Vec Ra Blas GPUs Compiling Inline RCpp

RCpp example cont.

We can then load the file using dyn.load and proceed as in the
inline example.
dyn.load("dd.rcpp.so")

dd.rcpp <- function() {
x <- integer(10000)
res <- .Call("dd_rcpp", x)
tabulate(res$vec)

}

mean(replicate(100, system.time(dd.rcpp())["elapsed"])))

[1] 0.00047

This beats the inline example by a neglible amount which is
probably due to some overhead the in the easy-to-use inlining.

The file dd.rcpp.sh runs the full RCpp example.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Embarassingly parallel

Several R packages on CRAN provide the ability to execute code in
parallel:

I NWS
I Rmpi
I snow
I papply
I taskPR

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

NWS Intro

NWS, or NetWorkSpaces, is an alternative to MPI (which we discuss
below). Based on Python, it may be easier to install (in case
administrator rights are unavailable) and use than MPI. It is
accessible from R, Python and Matlab.

NWS is available via Sourceforge as well as CRAN. An introductory
article (focussing on Python) appeared last summer in Dr. Dobb’s.

On Debian and Ubuntu, installing the python-nwsserver package
on at least the server node, and installing r-cran-nws on each
client is all that is needed.

Other system may need to install the twisted framework for
Python first.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://nws-r.sourceforge.net
http://cran.r-project.org/web/packages/nws
http://www.ddj.com/web-development/200001971

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

NWS data store example

A simple example, adapted from one of the package demos:
ws <- netWorkSpace(’r place’) # create a ’value store’

nwsStore(ws, ’x’, 1) # place a value (as a fifo)

cat(nwsListVars(ws), "\n") # we can list
nwsFind(ws, ’x’) # and lookup
nwsStore(ws, ’x’, 2) # and overwrite
cat(nwsListVars(ws), "\n") # now see two entries

cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsListVars(ws), ’\n’) # and none left

cat(nwsFetchTry(ws,’x’,’no go’),’\n’) # can’t fetch more

The script nwsVariableStore.r contains this and a few more
commands.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

NWS sleigh example

The NWS component sleigh is an R class that makes it very easy to
write simple parallel programs. Sleigh uses the master/worker
paradigm: The master submits tasks to the workers, who may or may
not be on the same machine as the master.
create a sleigh object on two nodes using ssh
s <- sleigh(nodeList=c("joe", "ron"), launch=sshcmd)

execute a statement on each worker node
eachWorker(s, function() x <<- 1)

get system info from each worker
eachWorker(s, Sys.info)

run a lapply-style eachWorker over each element of list
eachElem(s, function(x) {x+1}, list(1:10))

stopSleigh(s)

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

NWS sleigh cont.

The NWS framework and sleigh object will be described in more
more detail in the presentation by David Henderson et al on
Wednesday morning at UseR! 2008.

Also of note is the extended caretNWS version of caret. It uses
nws and sleigh for embarassingly parallel task in classification and
regression model training and evaluation: bagging, boosting,
cross-validation, bootstrapping,

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Rmpi

Rmpi is a CRAN package that provides and interface between R and
the Message Passing Interface (MPI), a standard for parallel
computing. (c.f. Wikipedia for more and links to the Open MPI and
MPICH2 projects for implementations).

The preferred implementation for MPI is now Open MPI. However, the
older LAM implementation can be used on those platforms where
Open MPI is unavailable. There is also an alternate implementation
called MPICH2. Lastly, we should also mention the similar Parallel
Virtual Machine (PVM) tool; see its Wikipedia page for more.

Rmpi allows us to use MPI directly from R and comes with several
examples. However, we will focus on the higher-level usage via snow.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.mpi-forum.org/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org
http://en.wikipedia.org/wiki/Parallel_Virtual_Machine
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

MPI Example

Let us look at the MPI variant of the standard ’Hello, World!’ program:

1 #include < s t d i o . h>
2 #include " mpi . h "
3

4 i n t main (i n t argc , char∗∗ argv)
5 {
6 i n t rank , s ize , nameLen ;
7 char processorName [MPI_MAX_PROCESSOR_NAME] ;
8

9 MPI_ I n i t (&argc , &argv) ;
10 MPI_Comm_ rank (MPI_COMM_WORLD, &rank) ;
11 MPI_Comm_ s ize (MPI_COMM_WORLD, &s ize) ;
12

13 MPI_Get_processor_name(processorName , &nameLen) ;
14

15 p r i n t f (" Hel lo , rank %d , s ize %d on processor %s \ n " ,
16 rank , s ize , processorName) ;
17

18 MPI_ F i n a l i z e () ;
19 return 0;
20 }

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

MPI Example: cont.

We can compile the previous example via
$ mpicc -o mpiHelloWorld mpiHelloWorld.c

If it it has been copied across several Open MPI-equipped hosts, we
can execute it N times on the M listed hosts via:
$ orterun -n 8 -H ron,joe,wayne,tony /tmp/mpiHelloWorld

Hello, rank 0, size 8 on processor ron
Hello, rank 4, size 8 on processor ron
Hello, rank 6, size 8 on processor wayne
Hello, rank 3, size 8 on processor tony
Hello, rank 2, size 8 on processor wayne
Hello, rank 5, size 8 on processor joe
Hello, rank 7, size 8 on processor tony
Hello, rank 1, size 8 on processor joe

Notice how the order of execution is indeterminate.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Rmpi

Rmpi, a CRAN package by Hao Yu, wraps many of the MPI API calls
for use by R

The preceding example can be rewritten in R as

1 # ! / usr / b in / env r
2

3 l i b r a r y (Rmpi) # c a l l s MPI_ I n i t
4

5 rk <− mpi .comm. rank (0)
6 sz <− mpi .comm. s ize (0)
7 name <− mpi . get . processor . name ()
8 cat (" Hel lo , rank " , rk , " s i ze " , sz , " on " , name, " \ n ")

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Rmpi: cont.

$ orterun -n 8 -H ron,joe,wayne,tony /tmp/mpiHelloWorld.r

Hello, rank 0 size 8 on ron
Hello, rank 4 size 8 on ron
Hello, rank 3 size 8 on tony
Hello, rank 7 size 8 on tony
Hello, rank 6 size 8 on wayne
Hello, rank 2 size 8 on wayne
Hello, rank 5 size 8 on joe
Hello, rank 1 size 8 on joe

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Rmpi: cont.

We can also exectute this as a one-liner using r (which we discuss
later):
$ orterun -n 8 -H ron,joe,wayne,tony\

r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello, rank 0 size 8 on ron
Hello, rank 4 size 8 on ron
Hello, rank 3 size 8 on tony
Hello, rank 7 size 8 on tony
Hello, rank 6 size 8 on wayne
Hello, rank 2 size 8 on wayne
Hello, rank 5 size 8 on joe
Hello, rank 1 size 8 on joe

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

snow

The snow package by Tierney et al provides a convenient abstraction
directly from R.

It can be used to initialize and use a compute cluster using one of the
available methods direct socket connections, MPI, PVM, or (since the
most recent release), NWS. We will focus on MPI.

A simple example:
nbNodes <- 8
cl <- makeCluster(nbNodes, "MPI")
clusterCall(cl, function() Sys.info()[c("nodename","machine")])

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

snow: Example

$ orterun -n 1 -H ron,joe r -lsnow,Rmpi \
-e’cl <- makeCluster(4, "MPI"); \

res <- clusterCall(cl, \
function() Sys.info()["nodename"]); \

print(do.call(rbind,res))’

4 slaves are spawned successfully. 0 failed.
nodename

[1,] "joe"
[2,] "ron"
[3,] "joe"
[4,] "ron"

Note that we told orterun to start on only one node – as snow then
starts four instances (which are split evenly over the two given hosts).

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

snow: Example cont.

The power of snow lies in the ability to use the apply-style paradigm
over a cluster of machines:
params <- c("A", "B", "C", "D", "E", "F", "G", "H")
cl <- makeCluster(4, "MPI")
res <- parSapply(cl, params, FUN=function(x) myBigFunction(x))

will ’unroll’ the parameters params one-each over the function
argument given, utilising the cluster cl. In other words, we will be
running four copies of myBigFunction() at once.

So the snow package provides a unifying framework for parallelly
executed apply functions.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

papply, biopara and taskPR

We saw that Rmpi and NWS have apply-style functions, and that
snow provides a unified layer. papply is another CRAN package that
wraps around Rmpi to distribute processing apply-style functions
across a cluster.

However, using the Open MPI-based Rmpi package, I was not able to
get papply to actually successfully distribute – and retrieve – results
across a cluster. So snow remains the preferred wrapper.

biopara is another package to distribute load across a cluster using
direct socket-based communication. We consider snow to be a more
general-purpose package for the same task.

taskPR uses the MPI protocol directly rather than via Rmpi. It is
however hard-wired to use LAM and failed to launch under the Open
MPI-implementation.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

slurm resource management and queue system

Once the number of compute nodes increases, it becomes of interest
to be able to allocate and manage resources, and to queue and batch
jobs. A suitable tool is slurm, an open-source resource manager for
Linux clusters.
Paraphrasing from the slurm website:

I it allocates exclusive and/or non-exclusive access to resources
(computer nodes) to users;

I it provides a framework for starting, executing, and monitoring
(typically parallel) work on a set of allocated nodes.

I it arbitrates contention for resources by managing a queue of
pending work.

Slurm is being developed by a consortium including LLNL, HP, Bull,
and Linux Networks.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

https://computing.llnl.gov/linux/slurm/

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

slurm example

Slurm wraps around Open MPI. That is an advantage inasmuch as it
permits use of Rmpi and other recent MPI-using applications built
against Open MPI.
$ srun -N 2 r -lRmpi -e’cat("Hello", \

mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on joe

$ srun -n 4 -N 2 -O r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \

mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n")’

Hello 0 of 1 on ron
Hello 0 of 1 on ron
Hello 0 of 1 on joe
Hello 0 of 1 on joe

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

slurm example

Additional coomand-line tools of interest are salloc, sbatch,
scontrol and sinfo. For example, to see the status of a compute
cluster:
$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up infinite 2 idle mccoy,ron

This shows two idle nodes in a partition with the default name ’debug’.

The sview graphical user interface combines the functionality of a
few of the command-line tools.

A more complete example will be provided in Wednesday’s
presentation.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

Using all those cores

Multi-core hardware is now a default, and the number of cores per
cpus will only increase. It is therefore becoming more important for
software to take advantage of these features.

Two recent (and still ’experimental’) packages by Luke Tierney are
addressing this question:

I pnmath uses OpenMP compiler directives for explicitly parallel
code;

I pnmath0 uses pthreads and implements the same interface.
They can be found at
http://www.stat.uiowa.edu/~luke/R/experimental/

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.stat.uiowa.edu/~luke/R/experimental/

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

pnmath and pnmath0

Both pnmath and pnmath0 provide parallelized vector math functions
and support routines.

Upon loading either package, a number of vector math functions are
replaced with versions that are parallelized using OpenMP. The
functions will be run using multiple threads if their results will be long
enough for the parallel overhead to be outweighed by the parallel
gains. On load a calibration calculation is carried out to asses the
parallel overhead and adjust these thresholds.

Profiling is probably the best way to assess the possible usefulness.
As a quick illustrations, we compute the qtukey function on a
eight-core machine:

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation Explicitly Resource Management Implicitly

pnmath and pnmath0 illustration

$ r -e’N=1e3; print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
66.590 0.000 66.649

$ r -lpnmath -e’N=1e3; print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
67.580 0.080 9.938

$ r -lpnmath0 -e’N=1e3; print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
68.230 0.010 9.983

The 6.7-fold reduction in ’elapsed’ time shows that the multithreaded
version takes advantage of the 8 available cores at a sub-linear
fashion as some communications overhead is involved.

These improvements will likely be folded into future R versions.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation overview biglm ff bigmemory

Extending physical RAM limits

Two recently released CRAN packages (both of which will have
UseR! 2008 presentations too) ease the analysis of large datasets.

I ff which maps R objects to files and is therefore only bound by
the available filesystem space

I bigmemory which maps R objects to dynamic objects not
managed by R

All of these packages can use the biglm package for out-of-memory
(generalized) linear models.

Also worth mentioning are the older packages g.data for delayed
data assignment from disk, filehash which takes a slightly more
database-alike view by ’attaching’ objects that are still saved on disk,
and R.huge which also uses the disk to store the data.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation overview biglm ff bigmemory

biglm

The biglm package provides a way to operate on
’larger-than-memory’ datasets by operating on ’chunks’ of data at a
time.
make.data <- function ... # see ’help(bigglm)
dataurl <- "http://faculty.washington.edu/tlumley/NO2.dat"
airpoll <- make.data(dataurl, chunksize=150, \

col.names=c("logno2","logcars","temp",\
"windsp","tempgrad","winddir",\
"hour","day"))

b <- bigglm(exp(logno2)~logcars+temp+windsp, \
data=airpoll, family=Gamma(log), \
start=c(2,0,0,0),maxit=10)

summary(b)

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation overview biglm ff bigmemory

ff

ff is the winner of the UseR! 2007 ’large datasets’ competition.

An illustration of ff use, taken from an example in the package:
data("trees")
create ffm object, convert ’trees’ data, creates two files
m <- ffm("foom.ff", c(31, 3))
m[1:31, 1:3] <- trees[1:31, 1:3]
create a ffm.data.frame wrapper around the ffm object
ffmdf <- ffm.data.frame(m, c("Girth", "Height", "Volume"))
define formula and fit the model
fg <- log(Volume) ~ log(Girth) + log(Height)
ffmdf.out <- bigglm(fg,data=ffmdf,chunksize=10,sandwich=TRUE)

The ffm function creates a flat-file based matrix which is then filled
with data from ’trees’ dataset, and converted into an ’ffm.data.frame’
which biglm can operate on.

Running object.size() on the ff object shows that it occupies
less memory than the (puny) trees dataset.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation overview biglm ff bigmemory

bigmemory

The bigmemory package allows us to allocate and access memory
managed by the operating system but ’outside’ of the view of R.
> object.size(big.matrix(1000,1000, "double"))

[1] 372

> object.size(matrix(double(1000*1000), ncol=1000))

[1] 8000112

Here we see that to R, a big.matrix of 1000× 1000 elements
occupies only 372 bytes of memory. The actual size of 800 mb is
allocated by the operating system, and R interfaces it via an ’external
pointer’ object.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation overview biglm ff bigmemory

bigmemory cont.

We can illustrate bigmemory by adapting the previous example:
bm <- as.big.matrix(as.matrix(trees), type="double")
colnames(bm) <- colnames(trees)
fg <- log(Volume) ~ log(Girth) + log(Height)
bm.out <- biglm.big.matrix(fg, data=bm, chunksize=10, \

sandwich=TRUE)

As before, the memory use of the new ’out-of-memory’ object is
smaller than the actual dataset as the ’real’ storage is outside of what
the R memory manager sees.

bigmemory can also provide shared memory allocation: one (large)
object can accessed by several R process as proper locking
mechanisms are provided.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org
http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation littler RPy

littler

Both r (from the littler package) and Rscript (included with R)
allow us to write simple scripts for repeated tasks.
#!/usr/bin/env r
a simple example to install one or more packages

if (is.null(argv) | length(argv)<1) {
cat("Usage: installr.r pkg1 [pkg2 pkg3 ...]\n")
q()

}
adjust as necessary, see help(’download.packages’)
repos <- "http://cran.us.r-project.org"
lib.loc <- "/usr/local/lib/R/site-library"
install.packages(argv, lib.loc, repos, dependencies=TRUE)

If saved as install.r, we can call it via
$ install.r ff bigmemory

The getopt package makes it a lot easier for r to support
command-line options.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation littler RPy

Rscript

Rscript can be used in a similar fashion.

Previously we had to use
$ R --slave < cmdfile.R
$ cat cmdfile.R | R --slave
$ R CMD BATCH cmdfile.R

or some shell-script varitions around this theme.

By providing r and Rscript, we can now write ’R scripts’ that are
executable. This allows for automation in cron jobs, Makefile, job
queues, ...

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation littler RPy

RPy
RPy packages provides access to R from Python:

1 from rpy import ∗
2

3 set_ d e f a u l t _mode(NO_CONVERSION) # avoid automat ic convers ion
4

5 r . l i b r a r y (" nnet ")
6 model = r (" Fxy~x+y ")
7

8 df = r . data_ frame (x = r . c (0 ,2 ,5 ,10 ,15)
9 , y = r . c (0 ,2 ,5 ,8 ,10)

10 , Fxy = r . c (0 ,2 ,5 ,8 ,10))
11

12 NNModel = r . nnet (model , data = df
13 , s i ze =10 , decay =1e−3
14 , l i n e o u t =True , sk ip=True
15 , maxi t =1000 , Hess =True)
16

17 XG = r . expand_ g r i d (x = r . seq (0 ,7 ,1) , y = r . seq (0 ,7 ,1))
18 x = r . seq (0 ,7 ,1)
19 y = r . seq (0 ,7 ,1)
20

21 set_ d e f a u l t _mode(BASIC_CONVERSION) # automat ic convers ion back on
22

23 f i t = r . p r e d i c t (NNModel ,XG)
24 pr in t f i t

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Wrapping up

In this tutorial session, we have
I seen several ways to profile execution times;
I looked a different vectorisation examples, as well speed

increases from using compiled code;
I provided a brief introduction to parallel execution frameworks

such as NWS, MPI and snow;
I looked at packages such as ff and bigmemory that can help

with larger data sets;
I briefly looked at ways to script R tasks using littler and
Rscript

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

http://www.r-project.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Appendix: Software Support

The tutorial is supported by a ’live cdrom’. The (updated) iso file
Quantian_UseR2008_tutorial_v2.iso can be downloaded
from http://quantian.alioth.debian.org/. Version one is
also at http://http://quantian.fhcrc.org.

The iso image contains a complete Debian operating sytem including
the graphical KDE user interface. All the software demonstrated
during the tutorial is available and fully functional. This includes

I R and all packages used,
I the accelerated Ra variant,
I Open MPI, NWS, Slurm and more,
I Emacs, ESS and a few other tools.

The versions correspond to the to the late-July 2008 snapshot of the
upcoming Debian release.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Quantian_UseR2008_tutorial_v2.iso
http://quantian.alioth.debian.org/
http://http://quantian.fhcrc.org

Motivation Measuring Speedup Parallel Out of Mem Automation

Appendix: Software Support cont.

The iso file can be burned to a cdrom that can be used to boot up a
workstation.

Alternatively, virtualisation software such as
I VMware Player (Windows, Linux),
I VMware Fusion (Mac OS X),
I VirtualBox (Windows, Linux) or
I QEMU (Linux)

can be used to run a ’virtual’ guest computer alongside the host
computer.

The software can also be installed to disk and updated using standard
Debian tools; see the documentation for the ’Debian Live’ tools used.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

Motivation Measuring Speedup Parallel Out of Mem Automation

Appendix: Software Support cont.

Known issues with the provided iso file are:

I The cdrom appears to fail on some Dell models, there may be a
BIOS incompatibility with the syslinux bootloader. Failures with
the Parallels virtualisation for OS X were also reported.

I No wireless extensions: if a laptop is booted off a cdrom,
chances are that wireless will not be supported due to lack of
binary firmware.

I The first release lacked Ra and the Open MPI compilers.
I With the most recent VirtualBox releases 1.6.*, the screen

resolution defaults to a 1280x1024 even if the host is running at a
smaller resolution.

Dirk Eddelbuettel Intro to High-Performance R / UseR! 2008 Tutorial

	Motivation
	Measuring and profiling
	RProf
	RProfmem
	Profiling

	Faster: Vectorisation and Compiled Code
	Vectorisation
	Ra
	Blas
	GPUs
	Compiled Code Overview
	Inline
	RCpp

	Parallel execution: Explicitly and Implicitly
	Explicitly paralle using clustered computing
	Resource management and queue system
	Implicitly parallel using several cores

	Out-of-memory processing
	overview
	biglm
	ff
	bigmemory

	Automation and scripting
	littler
	RPy

	Summary
	Appendix

