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Transformations |

Let Xy, Xz, ..., X, be independent p-variate observations and write
X = (X1 Xz ...Xy) for the corresponding p x n data matrix.

e Affine transformation
X — AX+ bt/

where A is a full-rank p x p matrix, b a p-vector and 1 a n-vector
full of ones.

e Orthogonal transformation
X — UX
with U'U = UU' = I.



Transformations |l

e Sign-change transformation
X — JX

where J is a p x p diagonal matrix with diagonal elements +1.

e Permutation
X — PX

where P is a p x p permutation matrix.



Location and scatter statistics

A p-vector valued statistic T = T(X) is called a location statistic if it
is affine equivariant, that is,

T(AX + b1") = AT(X) + b
for all full-rank p x p-matrices A and for all p-vectors b.

A p x pmatrix S = S(X) is a scatter statistic if it is affine equivariant
in the sense that
S(AX + b1") = AS(X)A

for all full-rank p x p-matrices A and for all p-vectors b.



Special scatter statistics

A scatter statistic with respect to the origin is affine equivariant in the
sense that
S(AXJ) = AS(X)A

for all full-rank p x p-matrices A and for all n x n sign change matrices
J.

A symmetrized scatter statistic version of a scatter statistic S is
defined as

Ssym(X) = S(Xsym)a

where Xsym is the matrix of all pairwise differences of the original
observation vectors.
A shape matrix is only affine equivariant in the sense that

S(AX + b1') xc AS(X)A'.



Independence property

A scatter functional S has the independence property if it is a
diagonal matrix for all random vectors with independent margins.

Note that in general scatter statistics do not have the independence
property. Only the covariance matrix, the matrix of fourth moments
and symmetrized scatter matrices have this property.

If, however, X has independent and at least p — 1 symmetric
components all scatter matrices will be diagonal matrices.



Examples of scatter matrices

The most common location and scatter statistics are the vector of
means and the regular covariance matrix COV.

A so called 1 step M-estimator one is for example the matrix of fourth
moments.

’
Va(X) =
COV4(X) P2

A regular M-estimator is for instance Tyler’'s shape matrix .

ave[||Xi — X| 2oy (Xi — X)(Xi — X)']

(Xi = T(X)(Xi = T(X))'
[1X; = T(X)IIZ

Sty

Spi(X) = pave

The symmetrized version of Tyler's shape matrix is known as
Dimbgens’s shape matrix.



Scatter matrices in R

R offers a lot functions for estimating different scatter matrices.

A most likely not complete list:

covRobust:
ICS:
ICSNP:

MASS:
robustbase:
rrcov:

cov.nnve
covOrigin, cov4, covAxis, tM

tyler.shape, duembgen.shape, HR.Mest,
HP1.shape

cov.rob, cov.trob
covMcd, covOGK

covMcd, covMest, covOgk



Two scatter matrices for ICS

Tyler et al. (2008) showed that two different scatter matrices
Si = S1(X) and S, = S»(X) can be used to find an invariant
coordinate system as follows:

Starting with S; and S,, define a p x p transformation matrix
B = B(X) and a diagonal matrix D = D(X) by

S,'SiB' =B'D

that is, B gives the eigenvectors of Sg‘ S1. The following result can
then be shown to hold.

The transformation X — Z = B(X)X yields an invariant coordinate
system in the sense that

B(AX)(AX) = JB(X)X

for some p x p sign change matrix J.



On the choice of S; and S»

As shown previously there are a lot of possibilities for Sy and S, to
choose from. Since all the scatter matrices have different properties,
these can yield different invariant coordinate systems.

Unfortunately, there are so far no theoretic results about the optimal
choice. This is still an open research question.

Some comments are however already possible:

o For two given scatter matrices, the order has no effect

o Depending on the application in mind the scatter matrices should
fulfill some further conditions.

e Practise showed so far that for most data sets different choices
yield only minor differences.



Implementation in R

The two scatter transformation for ICS is implemented in R in the
package ICS. The main function ics can take the name of two
functions for S; and S, or two in advance computed scatter matrices
and returns and S4-object. The package ICS offers then furthermore
several functions to work with an ics object and offers also several
scatter matrices and two tests of multinormality.

The function ics has options for different standardization methods
for Band D.

ics (X, S1 = cov, S2 = cov4, Slargs = list (),
S2args = list (), stdB = "Z", stdKurt = TRUE,
na.action = na.fail)

Multivariate nonparametric methods which are meaningful in the
context of ICS are implemented in the R package ICSNP.



What is an ICS good for?

So what is an ICS good for? In the following applications an ICS can
be of use:

o Descriptive statistics

¢ Finding outliers, structure and clustering
Dimension reduction

Independent component analysis
Multivariate nonparametrics

The following slides will by means of examples motivate some of the
above applications.



Descriptive statistics

The way how the transformation matrix B is obtained can also be
seen as taking the ratio of two different scale measures. Therefore
the elements of D can be seen as measures of Kurtosis.

Using this interpretation and given the choice of Sy, S,, Ty and Ta,
one obtains immediately:

The location: T1(X)

The scatter: Si(X)

Measure of skewness: T>(Z) — T1(Z2)

Measure of Kurtosis: S(2)

Note that when S; is the regular covariance matrix and S, the matrix
of fourth moments, the elements of D are based on classical
moments

The last two measures can then be used to construct tests for
multinormality or ellipticity (see for example Kankainen et al. 2007).



Finding outliers, structure and clusters

In general, that the coordinates are ordered according to their
kurtosis is a useful feature. One can assume that interesting
directions are the ones with extreme measures of kurtosis.

Outliers for example are usually shown in the first coordinate.

If the original data is coming from an elliptical distribution, Sy and S,
measure the same population quantity and therefore the values of D
in that case should approximately be all the same. For non-elliptical
distributions however they measure different quantities and therefore
the coordinates can reveal "hidden" structures.

In the case of X coming from an mixture of elliptical distributions, the
first or the last coordinate corresponds to Fisher’s linear discriminant
function (Without knowing the class labels!)



Finding the outliers

The modified wood gravity data is a classical data set for outlier
detection methods. It has 6 measurements on 20 observations
containing four outliers. Here S; is a M-estimator based on t; and S,
based on t.

Original dat: Invariant coor dinates




Finding the structure |

The following data set is
simulated and has 400
observations for 6
variables. It looks like an
elliptical data set.
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Finding the structure Il
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Clustering and dimension reduction

IC.1
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Independent component analysis

Independent component analysis (ICA) is a method often applied in
signal processing or medical image analysis.

The most basic ICA model is of the form

Xi=AZ, i=1,...,n
where Z; has independent components and A is a full rank mixing
matrix. The goal is to find an unmixing matrix B to recover the

independent components.

Oja et al. (2006) showed that the two scatter matrix transformation

recovers in such a model the independent components if S; and S,
have the independence property and the independent components
have different kurtosis values.

Using two robust scatters hence provides a robust ICA method.



Independent component analysis




Multivariate nonparametrics

A lot of multivariate nonparametric methods are not affine equivariant
by nature. Applying those methods in an invariant coordinate system
is therefore an important improvement.

The method introduced here is easier to apply than the so called
transformation re-transformation technique of Chakraborty and
Chaudhuri (1996) and has also further properties which can be used
in the analysis.



Marginal nonparametric methods

Puri and Sen describe very detailed how to use marginal signs and
ranks in multivariate nonparametrics.

However the tests based on these are not invariant under affine
transformations, i.e. the test decision will be based on the coordinate
system used.

Such tests can now for example be made affine invariant by
performing the test in the invariant coordinate system.

For testing purposes the coordinate system should be constructed
under the Hy. For example in the one sample location test when
testing for the origin the scatter functionals used should be taken wrt
to the origin and furthermore should be permutation invariant.
Therefore for the scatters should hold

Sk(AXPJ) = ASk(X)A', VA P, Jand k =1,2.



Why invariance is important

We simulate 60 observations from a Ny ((0,0,0,0.48)', I;) distribution
and then rotate the data with random matrix. The test is whether the
origin is the center of symmetry.

Test on original data:

Marginal One Sample Normal Scores Test
data: Y
T = 9.653, df = 4, p-value = 0.04669
alternative hypothesis: true location is not equal
to c(0,0,0,0)

Test on transformed data:

Marginal One Sample Normal Scores Test
data: (Y %*% t(A))
T = 9.387, df = 4, p-value = 0.05212
alternative hypothesis: true location is not equal
to c(0,0,0,0)



Why invariance is important I

Now the same using an invariant coordinate system.

Test on ICS based on original data:

Marginal One Sample Normal Scores Test
data: Z.Y
T = 9.737, df = 4, p-value = 0.04511
alternative hypothesis: true location is not equal
to ¢(0,0,0,0)

Test based on ICS based on transformed data:

Marginal One Sample Normal Scores Test
data: Z.Y.trans
T = 9.737, df = 4, p-value = 0.04511
alternative hypothesis: true location is not equal
to ¢c(0,0,0,0)



Key references |

@ Tyler, D. E., Critchley, F., Dimbgen, L. and Oja, H. (2008).
Exploring multivariate data via multiple scatter matrices.
Conditionally accepted.

ﬁ Oja, H., Sirkia, S. and Eriksson, J. (2006). Scatter matrices and
indepedent component analysis. Austrian Journal of Statistics,
19, 175-189.

@ Nordhausen, K. and Oja, H. and Tyler, D. E. (2008). Two scatter
matrices for multivariate data analysis: The package ICS.
Submitted.

@ Nordhausen, K. and Oja, H. and Tyler, D. E. (2006). On the

efficiency of invariant multivariate sign and rank test. Festschrift
for Tarmo Pukkila on his 60th birthday, 217—-231.

ﬁ Nordhausen, K., Oja, H. and Paindaveine, D. (2008). Rank-based
location tests in the independent component model. Conditionally
accepted.



Key references Il

Chakraborty, B. and Chaudhuri, P. (1996). On a transformation
retransformation technique for constructing affine equivariant
multivariate median. Proceedings of American Mathematical
Society, 124, 1529-1537.

Kankainen, A., Taskinen, S. and Oja, H. (2007). Tests of
multinormality based on location vectors and scatter matrices.
Statistical Methods & Applications, 16, 357-379.

Puri, M. L. and Sen, P.K. (1971). Nonparametric methods in
multivariate analysis. New York, Wiley & Sons.

Tyler, D.E. (1987). A distribution-free M-estimator of multivariate
scatter. The Annals of Statistics, 15, 234—251.



	Definitions
	Invariant Coordinate Selection
	ICS and R
	Applications and Examples

