Introduction: Why use gamlss?

- Unified framework for univariate regression type of models
- The fitted algorithm is modular, where different components can be added easily
- Models can be fitted easily and fast
- Explanatory tool to find appropriate set of models (and then use your favourite mode of inference)
- It deals with
 1. Skewness
 2. Kurtosis
 3. Overdispersion

Example 1: BMI against AGE for Dutch girls

BMI

AGE
Example 2: The fish species data, Stein and Juritz (1988)

Example 3: Visual analog scale (VAS) data

2. Model definition

Univariate Regression type model

\[Y \sim D(\mu, \sigma, \nu, \tau) \] where \(D \) is any distribution and

\[
\begin{align*}
g_1(\mu) &= \eta_1 = X_1\beta_1 + \sum_{j=1}^{J_1} Z_{j1}\gamma_{j1} \\
g_2(\sigma) &= \eta_2 = X_2\beta_2 + \sum_{j=1}^{J_2} Z_{j2}\gamma_{j2} \\
g_3(\nu) &= \eta_3 = X_3\beta_3 + \sum_{j=1}^{J_3} Z_{j3}\gamma_{j3} \\
g_4(\tau) &= \eta_4 = X_4\beta_4 + \sum_{j=1}^{J_4} Z_{j4}\gamma_{j4}.
\end{align*}
\]

GAMLSS philosophy: The response should have a distribution and all the parameters of the distribution could be modelled as functions of explanatory variables.

The GAMLSS model

Here \(\gamma_{jk} \sim N_{q_{jk}}(0, G_{jk}^{-1}) \) and \(G_{jk} = G_{jk}(\lambda) \).
MAP estimation of \((\beta, \gamma)\) given \(\lambda\)

Hence given \(\lambda\),
posterior mode (or MAP) estimation of \((\beta, \gamma)\)

1. maximising \(l_h\), hierarchical log likelihood
2. maximising \(l_p\), penalised log likelihood

with respect to \((\beta, \gamma)\)

3. Parametric Additive terms

- Linear and interaction terms for variates and factors.
- Polynomials, inverse polynomials, piecewise polynomials (with fixed knots), fractional polynomials (Royston and Altman, 1994)
- Non-linear parametric terms

Additive terms

- Additive smoothing terms
 - cubic splines (Green and Silverman, 1994)
 - P-splines (Eilers and Marx, 1996)
 - varying coefficient models (Hastie and Tibshirani, 1993)
 - loess (Cleveland et al., 1993)
- Random effects (overdispersion, simple random effects, random coefficients)
- Parameter driven Time Series (random walks)

1. Population distributions for \(Y\)

4.1 General comments

2. A wide range of discrete, continuous and mixed distributions implemented, including highly skew and kurtotic distributions
3. Easy implementation of new distributions
4. Different parameterisations of a distribution can be implemented
5. Truncated distributions and censored data easily implemented
6. Finite mixture distributions easy to implement (new)
4.2 Discrete distributions for \(Y \)

Two parameter distributions

- **BB** Beta-Binomial
- **NBI** Negative Binomial type I
- **NBII** Negative Binomial type II
- **PIG** Poisson-Inverse Gaussian
- **ZIP** Zero inflated Poisson

Three parameter distributions

- **SICHEL** Sichel
- **DEL** Delaport

4.3 Continuous distributions for \(Y \)

Four parameters

- \(\mu \) location
- \(\sigma \) scale
- \(\nu \) skewness
- \(\tau \) kurtosis

Skewness and kurtosis

- Negative skewness
- Positive skewness
- Platykurtosis
- Leptokurtosis

Distributions in real line

<table>
<thead>
<tr>
<th>Distributions</th>
<th>family</th>
<th>no parameters</th>
<th>skewness</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumbel</td>
<td>GU()</td>
<td>2</td>
<td>(negative)</td>
<td>-</td>
</tr>
<tr>
<td>Johnson's SU</td>
<td>JSU()</td>
<td>4</td>
<td>both</td>
<td>lepto</td>
</tr>
<tr>
<td>Johnson's original SU</td>
<td>JSU0()</td>
<td>4</td>
<td>both</td>
<td>lepto</td>
</tr>
<tr>
<td>Logistic</td>
<td>LO()</td>
<td>2</td>
<td>(symmetric)</td>
<td>lepto</td>
</tr>
<tr>
<td>NET</td>
<td>NET()</td>
<td>2 + (2 fixed)</td>
<td>(symmetric)</td>
<td>lepto</td>
</tr>
<tr>
<td>Normal</td>
<td>NO()</td>
<td>2</td>
<td>(symmetric)</td>
<td>meso</td>
</tr>
<tr>
<td>Power Exponential</td>
<td>PE()</td>
<td>3</td>
<td>(symmetric)</td>
<td>both</td>
</tr>
<tr>
<td>Reverse Gumbel</td>
<td>RG()</td>
<td>2</td>
<td>positive</td>
<td>-</td>
</tr>
<tr>
<td>Sinh Arc Sinh</td>
<td>SHASH()</td>
<td>4</td>
<td>both</td>
<td>lepto</td>
</tr>
<tr>
<td>Skew Exponential Power</td>
<td>SEP()</td>
<td>4</td>
<td>both</td>
<td>both</td>
</tr>
<tr>
<td>Skew t</td>
<td>ST()</td>
<td>4</td>
<td>both</td>
<td>lepto</td>
</tr>
<tr>
<td>t Family</td>
<td>TF()</td>
<td>3</td>
<td>(symmetric)</td>
<td>lepto</td>
</tr>
</tbody>
</table>
Distributions in positive real line

5. The R packages

- `gamlss`
- `gamlss.nl`
- `gamlss.tr`
- `gamlss.dist` (to be released)
- `gamlss.mx` (new)
- `gamlss.cen` (future)

The `gamlss` package

- The `gamlss()` function creates a `gamlss` object
- Methods for a `gamlss` object:
 - AIC(), addterm(), coef(), deviance(), fitted(), formula(), lot(), print(), predict(), residuals(), update(),
 - Others functions:
 - centiles(), fitted.plot(), GAIC(), gamlss.scope(),
 - par.plot(), lperd(), pdf.plot(), prof.plot(), prof.term(),
 - Q.stats(), refit(), rqres.plot(), stepGAIC(), term.plot()
6. Examples: Modelling body mass index (BMI) against AGE

Variables
- Body mass index ($Y = BMI$) against AGE,
 for 20243 Dutch girls aged under 20

Study
- cross sectional data,
- Dutch population study,
- Cole and Roede (1999)

Model for BMI

$$Y \sim BCT (\mu, \sigma, \nu, \tau)$$

where BCT is the Box-Cox t distribution, where $Y = BMI$ and $x = AGE^\xi$

- $\mu = cs(x, df_\mu)$
- $\log(\sigma) = cs(x, df_\sigma)$
- $\nu = cs(x, df_\nu)$
- $\log(\tau) = cs(x, df_\tau)$

We need to select the five values $df_\mu, df_\sigma, df_\nu, df_\tau, \xi$
Centile curves of BMI against AGE (# = 2.4)
(0.4, 2.3, 10, 25, 50, 75, 90, 97.7, 99.6) %

Fish species data: Stein and Juritz (1988)

\[
\begin{align*}
\log(\mu) &= h_1(x) \\
\log(\sigma) &= h_2(x) \\
\nu &= h_3(x) \quad \text{for} \quad SI(\mu, \sigma, \nu) \\
\logit(\nu) &= h_3(x) \quad \text{for} \quad DEL(\mu, \sigma, \nu)
\end{align*}
\]
Visual analog scale (VAS) data

368 patients, measured at 18 times with 7 treatments

Model for all data

\[Y \sim BEINF(\mu, \sigma, \nu, \tau) \text{ where } BEINF \text{ is the Beta inflated distribution} \]

\[\mu = cs(time, df=10) + treat + random(patient, 250) \]

\[\log|\sigma| = cs(time, df=10) + treat \]

\[\log|\nu| = cs(time, df=5) + treat \]

\[\log|t| = cs(time, df=5) + treat \]

Model for mu

\[\mu = cs(time, df=10) + treat + random(patient, 250) \]
Model for 50 and 550 participant

Fitting distributions to data

Fitting discrete distributions to computer failure data
tensile strength data: plots
6. Conclusions

GAMLSS allows flexible modelling of both:

i) the distribution of Y, including models for skewness and kurtosis

ii) the dependence of the distribution parameters, e.g. μ, σ, ν, τ,
on explanatory variables and random effect additive terms.

GAMLSS papers, manual and related publications, available from website

http://www.londonmet.ac.uk/gamlss/

END