I. Introduction

• LSA is a machine-learning model:
 – that induces representations of the meaning of words
 – by analyzing the relation between words and passages in large bodies of text (Corpus)

• The method used to capture the essential semantic information is dimension reduction:
 – selecting the most important dimensions from a co-occurrence matrix decomposed using Singular Value Decomposition. (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1991)

• As a result, LSA offers a way of assessing semantic similarity between any two samples of text in an automatic, unsupervised way. (Landauer & Dumais, 1997).
I. Introduction

• LSA has been used in applied settings with a high degree of success in areas like:
 – automatic essay grading (Foltz, Laham, & Landauer, 1999)

II. LSA implementation in R

Algorithm developed in R:
1. scan text:
 – Corpus with 6000 different words over 1000 documents
 – From “The catcher in the rye”

• As a model LSA’s most impressive achievements have been:
 – in human language acquisition simulations (Landauer & Dumais, 1997)
 – and modeling of high-level comprehension phenomena like metaphor understanding, causal inferences and judgments of similarity (Kintsch, 2001).

• Due to multidimensional nature of semantic space, LSA results are hard to visualize.

• Our goal was to develop a tool for visualizing this semantic relationship.
II. LSA implementation in R

• 2. normalize text:
 – remove punctuation
 – word stemming using Porter’s algorithm

• 3. Build Word by Document matrix

• 4. Singular Value Decomposition

• 5. Build new low dimensional matrix
II. LSA implementation in R

• 6.a Build term by term distances matrices:
 – Cosin, length & 1/eucl

III. Results

• 3D plots for word “Lago” (Lake)
 – Dimension reduction:
 • 100
 • 200

- 3d plot for word Lake in a 100 dimensional space
- 3d plot for word Lake in a 200 dimensional space
III. Results

• 3D plots for word “Soda”
 – Dimension reduction:
 • 100
 • 200

IV. Conclusion

• R offers an environment for LSA visualization.

• Applications:
 – Psychology
 – Linguistics
 – Cognitive Science
 – User modeling
 – Etc...

• Future work:
 – Dimension reduction using cmdscale has offered ad-hoc results in some cases.
Literature cited