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|. Introduction

* The method used to capture the essential
semantic information is dimension
reduction:

— selecting the most important dimensions
from a co-occurrence matrix decomposed
using Singular Value Decomposition.
(Deerwester, Dumais, Furnas, Landauer, &
Harshman, 1991)

|. Introduction

» LSA is a machine-learning model:

— that induces representations of the
meaning of words

— by analyzing the relation between
words and passages in large bodies
of text (Corpus)
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» As aresult, LSA offers a way of
assessing semantic similarity
between any two samples of text
In an automatic, unsupervised
way. (Landauer & Dumais, 1997).
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» LSA has been used in applied settings
with a high degree of success in areas
like:

— automatic essay grading
(Foltz, Laham, & Landauer, 1999)

— automatic tutoring to improve summarization
skills in children

(E. Kintsch, Steinhart, Stahl, Matthews, Lamb,
& the LSA Research Group, 2000).
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e Due to multidimensional nature of
semantic space, LSA results are hard to

visualize.

» Our goal was to develop a tool for
visualizing this semantic relationship.
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* As a model LSA’s most impressive

achievements have been:

—in human language acquisition simulations
(Landauer & Dumais, 1997)

— and modeling of high-level comprehension
phenomena like metaphor understanding,
causal inferences and judgments of similarity
(Kintsch, 2001).

ll. LSA implementation in R

Algorithm developed in R:

1. scan text:

— Corpus with 6000 diferent
words over 1000 documents

— From “The catcher in the rye”



ll. LSA implementation in R ll. LSA implementation in R

» 3. Build Word by Document matrix

Corpus Corpus
Then, he said, you - Then he said you Documer ts
were therel 1? 70&()... were there 12345678910
-Yes..-he Yes he answered
answiered - didn’t didnt vou know -
you knowi? o
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CORPUS | —»

» 2. normalize text:
— remove puntuation

—word stemming using Porter’s
algortihm
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e 5. Build new low dimensional matrix
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» 6.a Build term by term distances
matrices: 3D plots for word “Lago” (Lake)
— Dimension reduction:
* 100
* 200

Term

— Cosin, length & 1/eucl

lll. Results l1l. Results

- 3d plot for word Lake in a 100 dimensional space R el 2 200 dimensional space
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3D plots for word “Soda”

— Dimension reduction:
¢ 100
* 200

3d plot for word “Soda” in a 100 dimensional space

lll. Results V. Conclusion

* R offers an enviroment for Isa visualization.

Applications:

— Psychology
Linguistics
Cognitive Science
User modelling
— Etc...

* Future work:

— Dimension reduction using cmdscale has offer
ad-hoc results in some cases.

3d plot for word “Soda” in a 200 dimensional space
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