TIMP: A package for parametric modeling of multiway spectroscopic measurements

Katharine M. Mullen, Ivo H.M. van Stokkum
Department of Physics and Astronomy, Vrije Universiteit Amsterdam, The Netherlands
{kate,ivo}@nat.vu.nl

Project documentation: http://www.nat.vu.nl/comp/tim
Supported by NWO grant 635.000.014

The data: time-resolved spectra

- how do (bio)physical systems interact with light?
- can investigate by time-resolved spectroscopy:
 - measure spectra (i.e., intensity of light over wavelengths λ_j) over time t:
 - resulting data is matrix:

 $\Psi = \begin{bmatrix}
 \psi(t_1, \lambda_1) & \psi(t_1, \lambda_2) & \cdots & \psi(t_1, \lambda_n) \\
 \psi(t_2, \lambda_1) & \psi(t_2, \lambda_2) & \cdots & \psi(t_2, \lambda_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 \psi(t_m, \lambda_1) & \psi(t_m, \lambda_2) & \cdots & \psi(t_m, \lambda_n)
 \end{bmatrix}$

- analysis of Ψ provides insight into dynamics of underlying system

An underlying bilinear model

Time-resolved spectra Ψ:

$\Psi = CE^T$

- C: concentrations in time
- E: spectra
- column c_i of C represents the concentration profile, column e_i of E represents the spectrum of ith spectrally distinct component of Ψ

An inverse problem

goal: recover C and E from measured Ψ

- C and E large (1000×10)
- this nonlinear estimation problem has thousands of parameters

parametric model-based approach:

- fit a parametric model to C and solve for the entries of E as conditionally linear:
 estimation problem becomes

 \[
 \text{Minimize } \| (I - C(\Theta)C^+(\Theta))\Psi \|_2
 \]

- typical models $C(\Theta)$ have Θ of $10^1 - 10^2$ parameters
- parameter estimates valuable for physical interpretation; unrealistic estimates falsify model
R facilitates representation of models $C(\Theta)$:

- nonlinear parameter vector Θ partitioned into groups representing distinct model aspects
- parameters may be functions of other parameters, leading to hierarchy
- S4 class objects organize hierarchical models

Conclusions

- a PSE for modeling time-resolved spectra and other multi-way spectroscopic measurements has been implemented in R
 - numerous model types and options for multieperiment modeling, constraints on parameters supported

- R facilitates efficient iterative model specification, parameter estimation and validation

Future work:

- public release of the package
- extension of a GUI prototyped with tcl/tk package
- further development of models