GeoXp: an R package for interactive exploratory spatial data analysis. Illustration with a data set of schools in Midi-Pyrénées.

Thibault Laurent, Anne Ruiz-Gazen and Christine Thomas-Agnan
Gremaq (Groupe de Recherche en Economie Mathématique et Quantitative), UT1 and LSP (Laboratoire de Statistique et Probabilité), UT3

15 June 2006

Tool for researchers in spatial statistics, geography, ecology,... for anyone who possesses a data set of variables measured at geographical sites or on geographical zones (cities, counties, countries,...)

Main objective: exploratory spatial data analysis and coupling between a map and a statistical graph.
Principle

GeoXp links dynamically **statistical plots** like boxplot, histogram, scatterplot,... with a **map**.

Selection of a zone on the **map** results in the automatic highlighting of the **corresponding points** on the **statistical graph**.

Selection of a portion of the graph results in the automatic highlighting of the **corresponding sites** on the **map**.

Example : sites selected by mouse clicking on bars of histogram are represented in red on the map.

Example : sites selected by points or polygon on the map are represented in red on the histogram.
Example: sites selected by points or polygon on the map are represented in red on the histogram.

Descriptive functions: univariate or bivariate graphs such as histogram, barplot, scatterplot, ...

Geostatistic functions: angle plot, drift plot, ...

Econometric functions: Moran plot, neighbour plot, ...

Descriptive functions: univariate or bivariate graphs such as histogram, barplot, scatterplot, ...

Geostatistic functions: angle plot, drift plot, ...

Econometric functions: Moran plot, neighbour plot, ...
Functionality

Descriptive functions: univariate or bivariate graphs such as histogram, barplot, scatterplot,...

Geostatistic functions: angle plot, drift plot,...

Econometric functions: Moran plot, neighbour plot,...

Multivariate functions: principal component analysis, cluster analysis....

Use of GeoXp

Point pattern analysis: a site is represented on the map by a point. Coordinates are included into two vectors of numeric values.

Data set is a vector or a matrix of numerical or categorical variables, associated to each spatial unit.

Some options are common to all functions (spatial contours, bubbles,...) and others depend on the function (number of bars for histogram, use of colors for barplot,...).
Use of GeoXp

Point pattern analysis : a site is represented on the map by a point. Coordinates are included into **two vectors** of **numeric values**.

Data set is a **vector** or a **matrix** of **numerical** or **categorical variables**, associated to each **spatial unit**.

Some options are common to all functions (spatial contours, bubbles,...) and others **depend on** the function (number of bars for histogram, use of colors for barplot,...).

Remark : **no lattice/area data analysis** and **no use of Spatial Classes** such as in spdep library (Roger Bivand).

Example 1 (univariate analysis) :

\[\text{histomap}(\text{latitude}, \text{longitude}, \text{var}, \text{opt1}, \text{opt2a}) \]

Example 2 (bivariate analysis) :

\[\text{scattermap}(\text{latitude}, \text{longitude}, \text{var1, var2, opt1, opt2b}) \]

Example 3 (multivariate analysis) :

\[\text{pcamap}(\text{latitude}, \text{longitude, dataset, opt1, opt2c}) \]
Examples

Example 1 (univariate analysis) :
\textit{histomap(latitude, longitude, var, opt1, opt2a)}

Example 2 (bivariate analysis) :
\textit{scattermap(latitude, longitude, var1, var2, opt1, opt2b)}

Example 3 (multivariate analysis) :
\textit{pcamap(latitude, longitude, dataset, opt1, opt2c)}

Example 4 (spatial econometric analysis) :
\textit{moranplotmap(latitude, longitude, var, W, opt1, opt2d)}

Common options

On the map :
- Possibility to draw spatial contours.
- Possibility to cross out specific sites.
Presentation of GeoXp
Descriptive analysis
Geostatistic functions
Spatial Econometrics
Multivariate analysis

Principle
Use of GeoXp
Options
Interface
Description of Data

Common options

- Possibility to improve the map:
 - Possibility to draw **spatial contours**.
 - Possibility to cross out specific sites.
 - Possibility to print labels.

Use of GeoXp: data set considered

Spatial units s_j ($j = 1, \ldots, 226$): **public schools** in French Midi-Pyrénées region. Spatial position of a school is represented by the centroid of the "commune" where the school is located.

Call of a function \Rightarrow drawing of a graph, a map and creation of a **tcltk Window** (library tcltk), tool for **selecting** a zone on the map (or on the graph) and **using options**.

Thibault Laurent
GeoXp
Use of GeoXp: data set considered

Spatial units s_j ($j = 1,...,226$): **public schools** in French Midi-Pyrénées region. Spatial position of a school is represented by the **centroid of the “commune”** where the school is located.

Observed variables: number of students, age of staff, different fields of study, status of teacher,... during the 2003-2004 school year.

Aim: determine characteristic of schools according to their localization in rural, periurban and urban area (Insee classification).

Scatter plot

```
scattermap(X,Y,var1,var2,carte=coord,listvar=dataset)
```

Number of classroom \sim number of students

Possibility to draw conditionnal quantile regression for a given list of quantiles orders (**ex**: quantiles=c(0.05,0.5,0.95)).
Possibility to **add a graph** among histogram, scatterplot and barplot, by selecting variable(s) (given in `listvar`) on tcltk window.

The schools selected are mainly included in urban area.

```r
ginimap(lat,long,var,carte=coord,listvar=dataset)
```

Computes a **Lorentz curve** from ‘var’ and calculates the **Gini Index** associate.

Gini Index = 0.28; the 50% schools with lowest number of students contain only 29% of the student population.

Possibility to draw bubbles by selecting on tcltk window a numerical variable among `listvar`.

The schools selected are mainly included in rural area.
Density function estimate

densitymap(lat, long, var, carte=coord, listvar=dataset)

Use of function bkde.R (library Kernsmooth) with option kernel=tricube.

Possibility to choose an interval by mouse clicking on the graph on the extremities of interval or by directly specifying values.

Urban schools with a high coefficient are close to Toulouse.

Angle plot

angleplotmap(lat, long, var, carte=coord, listvar=dataset)

Represents the absolute difference between the value of var at two sites as a function of the angle between vector $\vec{s_i} - \vec{s_j}$ and the x-axis.

Variable average cost per student.

2 schools in the North and in the west with high average cost per student.
Drift map function

Creates a grid on the map and calculates the mean and median for each cell. The right plot (resp. left plot) represents row (resp. column) means and median.

Average number of student per class reaches a maximum in the center of the region which corresponds to the surroundings of Toulouse.

Spatial weight matrix

Possibility to create spatial weight matrix based on a threshold distance or based on a given number of nearest neighbors.

ex:

\[
W = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

Neighbour plot

Scatterplot of the values of a variable at neighbouring sites for a neighbourhood structure given by a spatial weight matrix.

2 schools with a high difference with its neighbours for variable average distance between school and home. W built with 3 nearest neighbors.

Moran plot

On x-axis, is represented \((Var - \bar{Var})\) and on y-axis, is represented \(W(Var - \bar{Var})\).

It also calculates Moran's I statistic (see nonnormoran.r) and gives a p-value associated to the gaussian test or to the permutation test.
High spatial autocorrelation for average number of student by class: Moran’s I statistic = 0.19 with p-value < 0.0001.

Schools with high values and whose neighbours have also high values are mainly included in urban area.

Cluster Analysis

`clustermap(lat,long,dataset,number.of.class)`

Performs a classification of the sites from the variables included in ‘dataset’ and computes a bar plot of the clusters calculated.

Two methods: Hierarchical Cluster Analysis (see hclust.R) or k-means clustering (see kmeans.R)
There seem to exist no link between calculated clusters and geographical area.

Writing of a GeoXp user manual.

To include others functions as scatterplot 3D, sliced inverse regression, projection pursuit, spatial autoregressive models (SAR, SEM,...).

Integration of Micromaps software (Carr and Symanzik).
You can download GeoXp on

http://w3.univ-tlse1.fr/GREMAQ/Statistique/

Don't try to ask me a demonstration

Merci de votre attention !!