Overview

- Directed Acyclic Graph (DAG) and its skeleton
- The PC-algorithm for finding the skeleton is consistent
- R-package: pcalg

Directed Acyclic Graphs (DAGs)

- Nodes: Random Variables
- Edges: Some Dependence
- Recursive factorization:
 \[f(GM,C,S) = f(GM) f(C|GM) f(S|GM) \]

Directed Global Markov Property

- DAG implies conditional independence relations
- \(C \perp S | GM \iff C,S \text{ are separated by } GM \)
- In
 \[\left(G_{An(C\cup S\cup GM)} \right)^m \]

- Ancestral set
- Moralize
- Drop directions
Skeleton of a DAG

- Ignore directions of arrows
- Edge between two nodes A and B
 A, B are dependent given every subset of
 remaining nodes

PC-algorithm for finding the skeleton

1. Form complete graph G
2. $l = -1$
3. repeat
 1. $l = l + 1$
 2. repeat
 1. select ordered pair of adjacent nodes A, B in G
 2. select neighborhood N of A with size l (if possible)
 3. delete edge A, B in G if A, B are cond. indep.
 given N
 until all ordered pairs have been tested
4. until all neighborhoods are of size smaller than l

Main Result

- Test Cond. Indep. Relations $A \perp B \mid S$ consistently
- PC-Algorithm is consistent
 (more detailed results when using assumptions)

R-package: pcalg

- Estimate the skeleton given a data matrix
- Visualize the estimated skeleton