Introduction

Objectives of Sensitivity Analysis (examples):

- Help identify key sources of variability (to assist policy making, risk management strategy)
- Help identify key sources of uncertainty (to prioritize additional data collection to reduce uncertainty)
- Variance of an output
- What causes worst/best outcomes
- What are critical control points, critical limits

Local vs. Global Sensitivity Analysis

Model Dependent vs. Model Independent Sensitivity Analysis

Applicability of methods often depends upon characteristics of a model (e.g., nonlinear, thresholds, categorical inputs, etc.)

Moving from Uncertainty Analysis to Sensitivity Analysis

Uncertainty Analysis UA (Janssen, RIVM, The Netherlands):
The study of the uncertain aspects of a model and of their influence on the (uncertainty of the) model output

Sensitivity Analysis SA (Saltelli, EU JRC, Ispra):
The study of how the uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model input
Ideal SA Method

- **Cope with scale and shape of the input factors:** Range of the factor variation and shape / parameters of the pdf.
- **Include multi-dimensional averaging:** Global versus local methods
- **Model independent (model free):** Cope with non-linear / non-additive, non-monotonic models
- **Grouping of factors:** Treat grouped factors as if they were single factors

Cost efficient

Pay attention to computational costs

SA types

- Local or global
- Qualitative or quantitative

Sobol’ Sensitivity Measures

First-order Sensitivity Measure \((S_i) \)

Measures the fractional contribution of \(x_i \) to the variance of \(f(x) \) without accounting for interactions of \(x_i \) with the other factors.

\[
S_i \equiv \frac{V_{x_i} (E_{x_{\{i\}}}(Y|X_i))}{V_Y}
\]

Total-order Sensitivity Measure \((TS_i) \)

The sum of all the sensitivity measures involving the factor in question.

E.g. for a model with three input factors, \(TS_1 = S_1 + S_{12} + S_{13} + S_{123} \).

\[
TS_i \equiv \frac{E_{x_{\{i\}}}(V_{x_i}(Y|X_{\{i\}}))}{V_Y}
\]

Sobol’ LP\(_{\tau} \) sampling

- Each Sensitivity Measure is a quotient of integrals in a multidimensional space, which can be approximated via MC integration.
- For large or computer-intensive models it is important that the integral be approximated with as few model evaluations as possible.
- The LP\(_{\tau} \) sequences have the property of always generating points which are regularly distributed in the factor space.

2002 Knowledge Economy Index

<table>
<thead>
<tr>
<th>GERD</th>
<th>PHD</th>
<th>RES</th>
<th>TES</th>
<th>GCF</th>
<th>LLL</th>
<th>e-gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>46502</td>
<td>8681</td>
<td>265812</td>
<td>160184</td>
<td>2692</td>
<td>0.48</td>
</tr>
<tr>
<td>FR</td>
<td>31871</td>
<td>18640</td>
<td>5.81</td>
<td>154586</td>
<td>833</td>
<td>0.64</td>
</tr>
<tr>
<td>UK</td>
<td>25763</td>
<td>7224</td>
<td>17017</td>
<td>131318</td>
<td>62</td>
<td>0.62</td>
</tr>
<tr>
<td>IT</td>
<td>15013</td>
<td>4.75</td>
<td>149048</td>
<td>4.44</td>
<td>81584</td>
<td>1121</td>
</tr>
<tr>
<td>ES</td>
<td>7829</td>
<td>2544</td>
<td>63318</td>
<td>4.44</td>
<td>81584</td>
<td>7528</td>
</tr>
<tr>
<td>BE</td>
<td>5552</td>
<td>711</td>
<td>26856</td>
<td>6.11</td>
<td>27715</td>
<td>358</td>
</tr>
<tr>
<td>AT</td>
<td>4467</td>
<td>843</td>
<td>25228</td>
<td>6.11</td>
<td>27715</td>
<td>358</td>
</tr>
<tr>
<td>FI</td>
<td>1476</td>
<td>38632</td>
<td>6.11</td>
<td>9906</td>
<td>533</td>
<td>0.76</td>
</tr>
<tr>
<td>DK</td>
<td>3486</td>
<td>25912</td>
<td>8.51</td>
<td>16759</td>
<td>547</td>
<td>0.82</td>
</tr>
<tr>
<td>PT</td>
<td>1286</td>
<td>1017</td>
<td>5.83</td>
<td>20191</td>
<td>161</td>
<td>0.58</td>
</tr>
<tr>
<td>IE</td>
<td>1167</td>
<td>316</td>
<td>7573</td>
<td>154</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>1727</td>
<td>7.66</td>
<td>22807</td>
<td>769</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>933</td>
<td>5.08</td>
<td>35402</td>
<td>1476</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>3.96</td>
<td>16767</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21 missing values

value above the mean

value below the mean
Acknowledging assumptions in the development of the Index

1. **Selecting Indicators**
 - Inclusion-Exclusion of one indicator-at-a-time

2. **Imputation**
 - Trend model: least squares polynomial regression + t-test for the estimates of the std for regression coefficients

3. **Weighting**
 - Equal weights
 - Conceptual model
 - Country-specific weights

4. **Aggregation**
 - Linear
 - Geometric

Uncertainty analysis results

Investing in the Knowledge Economy (EU-15):
AT has a 35% probability to be among the top 5 countries and 0% probability to be among the bottom 5 countries

Sensitivity analysis results (Sobol’ method)

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>FR</th>
<th>AT</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD FR 2002</td>
<td>0.009</td>
<td>0.045</td>
<td>0.139</td>
<td>0.353</td>
</tr>
<tr>
<td>PhD FI 2002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>RSE EL 2002</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>RSE SE 2002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>TES UK 2002</td>
<td>0.000</td>
<td>0.032</td>
<td>0.000</td>
<td>0.083</td>
</tr>
<tr>
<td>LLI T 2002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>LLI UK 2002</td>
<td>0.004</td>
<td>0.008</td>
<td>0.001</td>
<td>0.024</td>
</tr>
<tr>
<td>Aggregation</td>
<td>0.011</td>
<td>0.139</td>
<td>0.166</td>
<td>0.356</td>
</tr>
<tr>
<td>Weighting</td>
<td>0.052</td>
<td>0.169</td>
<td>0.008</td>
<td>0.207</td>
</tr>
<tr>
<td>Inel./Excl.</td>
<td>0.718</td>
<td>0.894</td>
<td>0.147</td>
<td>0.582</td>
</tr>
<tr>
<td>sum of all 24 input factors</td>
<td>0.804</td>
<td>0.482</td>
<td>0.684</td>
<td>0.718</td>
</tr>
</tbody>
</table>

First order: Capture individual impact

Total effect: Capture interactions/synergies

Sensitivity analysis as a tool to identify thresholds

Selected countries rank versus two important imputed values:
- PhD FR \(\sim N(6428,476)\)
- TES UK \(\sim N(4.52,0.17)\)

Regardless of the changes in the other factors (imputed values, aggregation, weighting, set of indicators)...
- **France** will not fall behind the 6th position if the expected number of PhD students is 7200.
- **UK** will not fall behind the 8th position if the expected value for TES = 4.52% is the correct one.
Further reading

JRC Information Server on Composite Indicators at http://farmweb.jrc.cec.eu.int/ci/