Basic principles of bond pricing

- **yield to maturity**
 \[p_c + a = C \sum_{i=1}^{n} e^{-y m_i} + R e^{-y m_n} \]

- equivalent formulation of the bond price equation uses the discount factors \(d_i = \delta(m_i) = e^{-s m_i} \)
- continuous discount function \(\delta(\cdot) \) is formed by interpolation of the discount factors
 \[p_c + a = C \sum_{i=1}^{n} \delta(m_i) + \delta(m_n)R \]

- implied \(j \)-period forward rate
 \[f_{ij} = \frac{j s_j - t s_t}{j - t} \]

- duration is a weighted average of time to cash flows
 \[D = \frac{1}{p_c + a} \left[C \sum_{i=1}^{n} \delta(m_i)m_i + \delta(m_n)Rm_n \right] \]

Term structure estimation

- estimate zero-coupon yield curves and credit spread curves from market data
- usual way for calculation of credit spread curves
 \[c_i(t) = s_i(t) - s_{ref}(t) \]
- parsimonious approach widely used by central banks

<table>
<thead>
<tr>
<th>Maturities</th>
<th>Yields</th>
<th>Spread curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.026</td>
<td>-0.0005</td>
</tr>
<tr>
<td>10</td>
<td>0.028</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>0.030</td>
<td>0.0005</td>
</tr>
<tr>
<td>5</td>
<td>0.032</td>
<td>0.0010</td>
</tr>
<tr>
<td>10</td>
<td>0.034</td>
<td>0.0015</td>
</tr>
<tr>
<td>15</td>
<td>0.036</td>
<td>0.0020</td>
</tr>
<tr>
<td>5</td>
<td>0.038</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

GERMANY
AUSTRIA
ITALY
Instantaneous forward rates

\[f(m, b) = \beta_0 + \beta_1 \exp\left(-\frac{m}{\tau_1}\right) + \beta_2 \frac{m}{\tau_1} \exp\left(-\frac{m}{\tau_1}\right) + \beta_3 \frac{m}{\tau_1} \exp\left(-\frac{m}{\tau_2}\right) \]

Spot rates

\[s(m, b) = \beta_0 + \beta_1 \frac{1 - \exp(-m/\tau_1)}{m/\tau_1} + \beta_2 \left(\frac{1 - \exp(-m/\tau_1)}{m/\tau_1} - \exp(-m/\tau_1) \right) \]

Objective function

\[b_{opt} = \min_b \sum_{i=1}^n \omega_i (\hat{P}_i - P_i)^2 \quad \text{weighted price errors} \]

\[b_{opt} = \min_b \sum_{i=1}^n (\hat{y}_i - y_i)^2 \quad \text{yield errors} \]

Extensions

- Svensson (1994) extended the functional form by two additional parameters which allows for a second hump-shape

\[f(m, b) = \beta_0 + \beta_1 \exp\left(-\frac{m}{\tau_1}\right) + \beta_2 \frac{m}{\tau_1} \exp\left(-\frac{m}{\tau_1}\right) + \beta_3 \frac{m}{\tau_1} \exp\left(-\frac{m}{\tau_2}\right) + \beta_4 \frac{m}{\tau_2} \exp\left(-\frac{m}{\tau_2}\right) \]

- simple calculation method of credit spread curves could lead to twisting curves

- Jankowitsch and Pichler (2004) proposed a joint estimation method, which leads to smoother and more realistic credit spread curves

References I

- Bank for International Settlements
 Zero-coupon yield curves: technical documentation
 BIS Papers, No. 25, October 2005

- David Bolder, David Streliski
 Yield Curve Modelling at the Bank of Canada

- Alois Geyer, Richard Mader
 Estimation of the Term Structure of Interest Rates - A Parametric Approach
 OeNB, Working Paper, No. 37, 1999
Rainer Jankowitsch, Stefan Pichler
Parsimonious Estimation of Credit Spreads

Charles R. Nelson, Andrew F. Siegel
Parsimonious Modeling of Yield Curves

Lars E.O. Svensson
Estimating and Interpreting Forward Interest Rates:
Sweden 1992-1994