What is this talk about?

- an R package bundle

hoa

Higher Order (small sample) Asymptotics

\[n \xrightarrow{\text{as}} \infty \]
for likelihood-based parametric inference

... and where to read more about the subject

Likelihood inference

confidence intervals and p-values are computed using

\[p(\theta; \hat{\theta}) = \Pr(\hat{\theta} \leq \theta; y) \]

- exact: \[p(\theta; \hat{\theta}) = \Pr(Y \leq y; \theta) \]
- approximate:

\[p(\theta; \hat{\theta}) = \Phi(\text{pivot}) + O_p(n^{-1/2}) \]

- Wald pivot:

\[w(\theta) = \sqrt{2}(y - \theta) \]

- likelihood root:

\[r(\theta) = \text{sign}(\hat{\theta} - \theta) \left[2 \log(1 + (y - \theta)^2) \right]^{1/2} \]

- score pivot:

\[s(\theta) = \sqrt{2}(y - \theta) / \left(1 + (y - \theta)^2 \right) \]

A toy example

i.i.d. sample \(y_1, \ldots, y_n \) from the Cauchy distribution

\[f(y; \theta) = \frac{1}{\pi \left(1 + (y - \theta)^2 \right)} \]

log likelihood function:

\[\ell(\theta; y) = -\sum_{i=1}^n \log(1 + (y_i - \theta)^2) \]

maximum likelihood estimator:

\[\hat{\theta} = \arg\max_{\theta} \ell(\theta; y) \]

\(n = 1 \)

\[\hat{\theta} = y \]

\[F(\hat{\theta}; \theta) = F(y; \theta) = \pi^{-1} \arctan(y - \theta) \]
Can we do better?

\[p(\theta; \hat{\theta}) = \Phi(\text{pivot}) + O(n^{-3/2}) \]

- modified likelihood root

\[r^*(\theta) = r(\theta) + \frac{1}{r(\theta)} \log \frac{s(\theta)}{r(\theta)} \]

And what if \(n > 1 \)?

There is no exact solution, but …

marg [hoa] package

```r
> library( marg )
> set.seed( 321 )
> y <- rt( n = 15, df = 3 )
> y.rsm <- rsm( y ~ 1, family = student(3) )
> y.cond <- cond( y.rsm, offset = 1 )
> summary( y.cond, test = 0 )
```

\[p\text{-values: } 0.282 \text{(Wald), } 0.306 \text{ (r), } 0.354 \text{ (r*)} \]

General theory

- \(\theta = (\psi, \lambda) \), with scalar parameter of interest \(\psi \)
- significance function

\[p(\psi; \hat{\psi}) = \Pr(\hat{\psi} \leq \hat{\psi}; \psi) \]

- profile log likelihood:

\[\ell_p(\psi) = \ell(\psi, \hat{\lambda}; y) \]

 - Wald statistic:

\[w(\theta) = \frac{d\ell_p(\hat{\psi})}{(\hat{\psi} - \psi)} \]

 - likelihood root:

\[r(\theta) = \text{sign}(\hat{\psi} - \psi) \left(2(\ell_p(\hat{\psi}) - \ell_p(\psi)) \right)^{1/2} \]

 - score statistic:

\[s(\theta) = \frac{d\ell_p(\psi)}{d\psi} \]

with \(\ell_p(\psi) = -d\ell_p(\psi)/d\psi^2 \)
Higher order inference

Modified likelihood root

\[r^*(ψ) = r(ψ) + \frac{1}{r(ψ)} \log \frac{q(ψ)}{r(ψ)} \]

with \(q(ψ) \) representing a suitable correction term

- \(p(ψ; ̂ψ) = Φ\{r^*(ψ)\} + O_p(σ_n^{-3/2}) \)
- \(r^*(ψ) = r(ψ) + r_{inf}(ψ) + r_{np}(ψ) \)
 - \(r_{inf}(ψ) \): information adjustment
 - \(r_{np}(ψ) \): nuisance parameter adjustment

The hoa bundle

- **cond**: logistic regression
 \[Pr(Y_i = 1; β) = \frac{\exp(x_i^T β)}{1 + \exp(x_i^T β)} \]
- **marg**: linear nonnormal models
 \[y_i = x_i^T β + σ_i ε_i, \quad ε_i \sim f_0(·) \]
- **nlreg**: nonlinear heteroscedastic regression
 \[y_{ij} = μ(x_i; β) + ω(x_i; β, ρ)ε_{ij}, \quad ε_{ij} \sim N(0, 1) \]
- **csampling**: conditional sampling routines

airway data

- **airway.data**

```r
> head(airway)
response age sex lubricant duration type
1  0 48 1 0  45 1
2  0 48 1 0  45 0
3  1 39 0 1  40 0
4  1 59 1 0  83 1
5  1 24 1 1  90 1
6  1 55 1 1  25 1
```

Collet (1998)
Confidence intervals

level = 95 %

lower two-sided upper
Wald pivot -3.486 0.2271
Wald pivot (cond. MLE) -3.053 0.2655
Likelihood root -3.682 0.1542
Modified lik. root -3.130 0.2558
Modified lik. (cont. corr.) -3.592 0.5649

Diagnostics:

INF NP
0.05855 0.51426

Davison & Hinkley (1997, Example 7.7)

 R vignette in hoa v. 1.1-0

 www.isib.cnr.it/~brazzale/CS

- Alessandra Salvan, Anthony C. Davison, Nancy Reid
- Ruggero Bellio
- Douglas M. Bates, Kurt Hornik, Torsten Hothorn

... and the useRs!