A fixed effects approach to
GLMs with clustered data

Göran Broström

Department of Statistics
Umeå University
SE–901 87 Umeå, Sweden

1 Introduction

In situations where a large data set is partitioned into many relatively small
groups, and you want to test for group differences, the number of parameters
tend to increase with sample size. This fact causes the standard assump-
tions underlying asymptotic results to be violated. There are (at least) two
possible solutions to the problem, first, a random intercepts model, and sec-
ond, a fixed effects model, where asymptotics are replaced by a simple form
of bootstrapping.

In the glmML package, both these approaches are implemented. In this
paper, only the fixed effects approach is considered.

2 The fixed effects model

In the fixed effects model, testing is performed via a simple bootstrap. Un-
der the null hypothesis of no grouping effect, the grouping factor can be
randomly permuted without changing the probability distribution. This is
one basic idea in the estimation of the p-value by simulation. The direct
parametric aproach is to draw bootstrap samples from the estimated prob-
ability distribution.

We first show how to write down the log-likelihood function and all the
first and second partial derivatives. Then we introduce the profiling ap-
proach which reduces an optimizing problem in high dimensions to a prob-
lem consisting of numerically solving several one-variable equations and op-
timization in low dimensions. The profiling cannot be done explicitly, but
it is possible via *implicit differentiation*.

The procedure is implemented in glmML for the *Binomial* and *Poisson*
families of distributions. Some comparisons with alternative approaches are
made by simulation.