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Introduction

• R is a powerful, high level language.

• As R is used for larger programs there is a need for tools to

– help make code more reliable and robust

– help improve performance

• This talk outlines three approaches:

– name space management

– code analysis tools

– byte code compilation
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Why Name Spaces

Two issues:

• static binding of globals

• hiding internal functions

Common solution: name space management tools.
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Static Binding of Globals

• R functions usually use other functions and variables:

f <- function(z) 1/sqrt(2 * pi) * exp(- z^2 / 2)

• Intent: exp, sqrt, pi from base.

• Dynamic global environment: definitions in base can be

masked.
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Hiding Internal Functions

Some useful programming guidelines:

• Build more complex functions from simpler ones.

• Create and (re)use functional building blocks.

• A function too large to fit in an editor window may be too

complex.

Problem: All package variables are globally visible

• Lots of little functions means clutter for user.

• Lots of functions means name conflicts more likely.

• Consequence: often use big functions with repeated code.
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Name Spaces for Packages
Starting with 1.7.0 a package can have

a name space:

• Only explicitly exported variables are

visible when attached or imported.

• Variables needed from other packages

can be imported.

• Imported packages are loaded; may

not be attached.
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Name Spaces for Packages (cont.)

Adding a name space to a package involves:

• Adding a NAMESPACE file

• Replacing require calls by import directives.

• Replacing .First.lib by .onLoad (and maybe

.onAttach).
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NAMESPACE File Directives

• export

export(as.stepfun, ecdf, is.stepfun, stepfun)

• exportPattern

exportPattern("\\.test$")

• import

import(mva)

• importFrom

importFrom(stepfun, as.stepfun)
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NAMESPACE File Directives (cont.)

• useDynLib

useDynLib(stats)

• S3method

S3method(print, dendrogram)
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NAMESPACE File Directives (cont.)

• exportClass, exportClasses

exportClasses(mle, profile.mle, summary.mle)

• exportMethods

exportMethods(AIC, BIC, coef, confint, logLik, ...)

• importClassFrom

• importMethods

9

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Spaces and Method Dispatch

• S3 dispatch is based on combining generic and class name.

– no hope of private classes

• Looked up in environment where generic is called.

• Problem: if a package is imported but not attached its

methods may not be visible at the call site.
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Name Spaces and Method Dispatch (cont.)

• One solution: register S3 methods with the generic.

– methods are always available to the generic.

– methods need not be exported

∗ enforces calling methods only via generic.

∗ simplifies author/maintainer’s task

• Name space integration is conceptually simpler for S4

classes, methods, and generic functions.

• The current implementation is evolving and may become

simpler.
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Name Space Odds and Ends

• Name spaces are sealed.

– cannot add internal variables, imports, exports

– cannot change values by assignment

– simplifies implementation

– helps with byte code compilation

• Exports can be accessed by “fully qualified name”, e.g.

stats::ppr.

• Internal variables can be accessed using a triple colon, e.g.

stats:::vcov.coxph

12

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Source Code Analysis

• R provides a powerful infrastructure for managing test code.

• Test code alone cannot cover all possible execution paths.

• Source code analysis provides a complementary approach.

• Source code analysis examines code for possibly erroneous

constructs:

– using variables that are not defined

– calling functions with the wrong number of arguments

– calling functions with incorrect argument types

• Name spaces help to make checks more precise.
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Some Source Code Analysis Tools

• The package codetools provides some experimental tools:

– checkUsage checks individual functions.

– checkUsagePackage checks a loaded package.

• It is likely that these will eventually be merged into the

tools package.
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An Artificial Example

g<-function(x, y = TRUE) {
exp <- y
w <- x
y <- x
if (exp) exp(x+3) + ext(z-3)
else log(x, bace=2)

}

Results of a code analysis:

> checkUsage(g,name="g")
g: no visible global function definition for ’ext’
g: no visible binding for global variable ’z’
g: possible error in log(x, bace = 2): unused argument(s)

(bace ...)
g: local variable ’w’ assigned but may not be used
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An Artificial Example (cont.)

A More Sensitive Analysis:

> checkUsage(g,name="g",all=TRUE)
g: local variable ’exp’ may shadow global value
g: no visible global function definition for ’ext’
g: no visible binding for global variable ’z’
g: possible error in log(x, bace = 2): unused argument(s)

(bace ...)
g: local variable ’exp’ used as function with no apparent

local function definition
g: local variable ’w’ assigned but may not be used
g: parameter ’y’ changed by assignment
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Issues and Tradeoffs

• Finding the right sensitivity is challenging

– high sensitivity causes too many false positives

– low sensitivity misses too many real errors

• Current approach allows tuning by various parameters

• Another option is to attempt to prioritize messages

– has had some successes on Linux kernel code
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Issues and Tradeoffs (cont.)

• More sophisticated checks are needed

• Are user-supplied checks possible?

• Inferred or estimated type information may help

• Intra-procedural analysis may also help

• Partial evaluation may be useful

• May also be able to detect possible inefficiencies

• Source annotation mechanisms may help
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Profiling
• Rprof takes snapshots of call

stack

• summaryRprof reports

cumulative time in each

function.

• Tools to show more detail may

help.

• One example: call graph color

coded by total time in function.

• Package proftools contains

some first steps.
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Byte Code Compilation

• Compilation can improve efficiency:

– user code will run faster

– less native system code needed

• Developing a compiler can clarify the language:

– features that are hard to compile are hard to understand

• Code analysis is closely related to compilation

– code analysis for compilation is more conservative

– code analysis for correctness is more speculative
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A Simple Example

• Simplified normal density function:

f<-function(x, mu=0,sigma=1)
(1/sqrt(2 * pi)) *

exp(-0.5 * ((x - mu)/sigma)^2) / sigma

• Compiled with

fc<-cmpfun(f)
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Generated Code

• Byte code and assembly code for a stack machine:

16 1 LDCONST 0.398942 push 1/
√

2π
16 2 LDCONST -0.5 push constant −0.5
20 3 GETVAR x get, push x
20 4 GETVAR mu get, push mu
45 SUB subtract
20 5 GETVAR sigma get, push sigma
47 DIV divide
16 6 LDCONST 2 push 2
48 EXPT pop x, y, push xy

46 MUL multiply
50 EXP pop x, push ex

46 MUL multiply
20 5 GETVAR sigma get, push sigma
47 DIV divide
1 RETURN pop, return value
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Generated Code (cont.)

• The compiler

– folds constant expressions like 1/
√

2π

– inlines basic arithmetic functions

• Some timings for 1,000,000 repetitions:

Function x = 1 x = seq(0,3,len=5)

f 14.62 17.75

fc 3.95 7.67

dnorm 4.59 7.24

• Most improvement comes from constant folding.
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The Virtual Machine

• byte code instruction set

• stack architecture

• similar approach to Python, Perl, many Scheme systems

• also related to JVM, .NET

• Alternatives:

– threaded code (using GCC extensions)

– generate C code

– generate JVM, .NET code
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Compiler Operation

• Optimizations:

– constant folding

– special opcodes for most SPECIALs, many BUILTINs
– inlines simple .Internal calls: dnorm(y, 2, 3) is

replaced by
.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

– special opcodes for many .Internals

• Compiler currently uses a single recursive pass:

– fast, but limits optimizations.
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Timings and Performance

• well-vectorized code will not improve much

• some examples see substantial speedup:

Context Speedup

Marching Cubes 2

MCMC 2.5

Dynamic Programming 2.4

• internal version of lapply almost not needed anymore

• need to improve variable lookup

• need to improve function calling
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Future Directions

• Partial evaluation when some arguments are constants

• Intra-procedural optimizations and inlining

• Run-time specialization

• Vectorized opcodes

• Declarations (sealing, scalars, types, strictness)

• Advice on possible inefficiencies

• C code generation (maybe C−−)

• Compilation technology? (Lisp/ML, Haskell, Self, NESL)
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Conclusions

• As R is used for more high level projects, the need for

programming support tools increases.

• The highly dynamic nature of R makes creating these tools

challenging.

• New language features such as annotations or declarations

may help.

• Results so far are quite promising.

• Much more work remains to be done.
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Obtaining the Code

• Code is still experimental

• Once it is more stable it will be merged into R

• For now, you can obtain the code at

http://www.stat.uiowa.edu/~luke/R/
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