
Namespaces, Source Code Analysis,
and Byte Code Compilation

Luke Tierney

Department of Statistics & Actuarial Science

University of Iowa

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Introduction

• R is a powerful, high level language.

• As R is used for larger programs there is a need for tools to

– help make code more reliable and robust

– help improve performance

• This talk outlines three approaches:

– name space management

– code analysis tools

– byte code compilation

1

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Why Name Spaces

Two issues:

• static binding of globals

• hiding internal functions

Common solution: name space management tools.

2

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Static Binding of Globals

• R functions usually use other functions and variables:

f <- function(z) 1/sqrt(2 * pi) * exp(- z^2 / 2)

• Intent: exp, sqrt, pi from base.

• Dynamic global environment: definitions in base can be

masked.

3



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Hiding Internal Functions

Some useful programming guidelines:

• Build more complex functions from simpler ones.

• Create and (re)use functional building blocks.

• A function too large to fit in an editor window may be too

complex.

Problem: All package variables are globally visible

• Lots of little functions means clutter for user.

• Lots of functions means name conflicts more likely.

• Consequence: often use big functions with repeated code.

4

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Spaces for Packages
Starting with 1.7.0 a package can have

a name space:

• Only explicitly exported variables are

visible when attached or imported.

• Variables needed from other packages

can be imported.

• Imported packages are loaded; may

not be attached.

5

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Spaces for Packages (cont.)

Adding a name space to a package involves:

• Adding a NAMESPACE file

• Replacing require calls by import directives.

• Replacing .First.lib by .onLoad (and maybe

.onAttach).

6

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

NAMESPACE File Directives

• export

export(as.stepfun, ecdf, is.stepfun, stepfun)

• exportPattern

exportPattern("\\.test$")

• import

import(mva)

• importFrom

importFrom(stepfun, as.stepfun)

7



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

NAMESPACE File Directives (cont.)

• useDynLib

useDynLib(stats)

• S3method

S3method(print, dendrogram)

8

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

NAMESPACE File Directives (cont.)

• exportClass, exportClasses

exportClasses(mle, profile.mle, summary.mle)

• exportMethods

exportMethods(AIC, BIC, coef, confint, logLik, ...)

• importClassFrom

• importMethods

9

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Spaces and Method Dispatch

• S3 dispatch is based on combining generic and class name.

– no hope of private classes

• Looked up in environment where generic is called.

• Problem: if a package is imported but not attached its

methods may not be visible at the call site.

10

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Spaces and Method Dispatch (cont.)

• One solution: register S3 methods with the generic.

– methods are always available to the generic.

– methods need not be exported

∗ enforces calling methods only via generic.

∗ simplifies author/maintainer’s task

• Name space integration is conceptually simpler for S4

classes, methods, and generic functions.

• The current implementation is evolving and may become

simpler.

11



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Name Space Odds and Ends

• Name spaces are sealed.

– cannot add internal variables, imports, exports

– cannot change values by assignment

– simplifies implementation

– helps with byte code compilation

• Exports can be accessed by “fully qualified name”, e.g.

stats::ppr.

• Internal variables can be accessed using a triple colon, e.g.

stats:::vcov.coxph

12

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Source Code Analysis

• R provides a powerful infrastructure for managing test code.

• Test code alone cannot cover all possible execution paths.

• Source code analysis provides a complementary approach.

• Source code analysis examines code for possibly erroneous

constructs:

– using variables that are not defined

– calling functions with the wrong number of arguments

– calling functions with incorrect argument types

• Name spaces help to make checks more precise.

13

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Some Source Code Analysis Tools

• The package codetools provides some experimental tools:

– checkUsage checks individual functions.

– checkUsagePackage checks a loaded package.

• It is likely that these will eventually be merged into the

tools package.

14

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

An Artificial Example

g<-function(x, y = TRUE) {
exp <- y
w <- x
y <- x
if (exp) exp(x+3) + ext(z-3)
else log(x, bace=2)

}

Results of a code analysis:

> checkUsage(g,name="g")
g: no visible global function definition for ’ext’
g: no visible binding for global variable ’z’
g: possible error in log(x, bace = 2): unused argument(s)

(bace ...)
g: local variable ’w’ assigned but may not be used

15



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

An Artificial Example (cont.)

A More Sensitive Analysis:

> checkUsage(g,name="g",all=TRUE)
g: local variable ’exp’ may shadow global value
g: no visible global function definition for ’ext’
g: no visible binding for global variable ’z’
g: possible error in log(x, bace = 2): unused argument(s)

(bace ...)
g: local variable ’exp’ used as function with no apparent

local function definition
g: local variable ’w’ assigned but may not be used
g: parameter ’y’ changed by assignment

16

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Issues and Tradeoffs

• Finding the right sensitivity is challenging

– high sensitivity causes too many false positives

– low sensitivity misses too many real errors

• Current approach allows tuning by various parameters

• Another option is to attempt to prioritize messages

– has had some successes on Linux kernel code

17

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Issues and Tradeoffs (cont.)

• More sophisticated checks are needed

• Are user-supplied checks possible?

• Inferred or estimated type information may help

• Intra-procedural analysis may also help

• Partial evaluation may be useful

• May also be able to detect possible inefficiencies

• Source annotation mechanisms may help

18

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Profiling
• Rprof takes snapshots of call

stack

• summaryRprof reports

cumulative time in each

function.

• Tools to show more detail may

help.

• One example: call graph color

coded by total time in function.

• Package proftools contains

some first steps.
19



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Byte Code Compilation

• Compilation can improve efficiency:

– user code will run faster

– less native system code needed

• Developing a compiler can clarify the language:

– features that are hard to compile are hard to understand

• Code analysis is closely related to compilation

– code analysis for compilation is more conservative

– code analysis for correctness is more speculative

20

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

A Simple Example

• Simplified normal density function:

f<-function(x, mu=0,sigma=1)
(1/sqrt(2 * pi)) *

exp(-0.5 * ((x - mu)/sigma)^2) / sigma

• Compiled with

fc<-cmpfun(f)

21

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Generated Code

• Byte code and assembly code for a stack machine:

16 1 LDCONST 0.398942 push 1/
√

2π
16 2 LDCONST -0.5 push constant −0.5
20 3 GETVAR x get, push x
20 4 GETVAR mu get, push mu
45 SUB subtract
20 5 GETVAR sigma get, push sigma
47 DIV divide
16 6 LDCONST 2 push 2
48 EXPT pop x, y, push xy

46 MUL multiply
50 EXP pop x, push ex

46 MUL multiply
20 5 GETVAR sigma get, push sigma
47 DIV divide
1 RETURN pop, return value

22

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Generated Code (cont.)

• The compiler

– folds constant expressions like 1/
√

2π

– inlines basic arithmetic functions

• Some timings for 1,000,000 repetitions:

Function x = 1 x = seq(0,3,len=5)

f 14.62 17.75

fc 3.95 7.67

dnorm 4.59 7.24

• Most improvement comes from constant folding.

23



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

The Virtual Machine

• byte code instruction set

• stack architecture

• similar approach to Python, Perl, many Scheme systems

• also related to JVM, .NET

• Alternatives:

– threaded code (using GCC extensions)

– generate C code

– generate JVM, .NET code

24

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Compiler Operation

• Optimizations:

– constant folding

– special opcodes for most SPECIALs, many BUILTINs
– inlines simple .Internal calls: dnorm(y, 2, 3) is

replaced by
.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

– special opcodes for many .Internals

• Compiler currently uses a single recursive pass:

– fast, but limits optimizations.

25

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Timings and Performance

• well-vectorized code will not improve much

• some examples see substantial speedup:

Context Speedup

Marching Cubes 2

MCMC 2.5

Dynamic Programming 2.4

• internal version of lapply almost not needed anymore

• need to improve variable lookup

• need to improve function calling

26

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Future Directions

• Partial evaluation when some arguments are constants

• Intra-procedural optimizations and inlining

• Run-time specialization

• Vectorized opcodes

• Declarations (sealing, scalars, types, strictness)

• Advice on possible inefficiencies

• C code generation (maybe C−−)

• Compilation technology? (Lisp/ML, Haskell, Self, NESL)

27



Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Conclusions

• As R is used for more high level projects, the need for

programming support tools increases.

• The highly dynamic nature of R makes creating these tools

challenging.

• New language features such as annotations or declarations

may help.

• Results so far are quite promising.

• Much more work remains to be done.

28

Namespaces, Source Code Analysis, and Byte Code Compilation UseR! 2004

Obtaining the Code

• Code is still experimental

• Once it is more stable it will be merged into R

• For now, you can obtain the code at

http://www.stat.uiowa.edu/~luke/R/

29


