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Data Mining & Data Dredging

Fifteenyearsagodata mining wasapejorativephraseamongststatisticians,
but theEnglishlanguageevolvesandthatsenseis now encapsulatedin the
phrasedata dredging.

In its current sensedata mining meansfinding structure in large-scale
databases.

It is oneof many newly-populartermsfor this activity, anotherbeingKDD
(KnowledgeDiscovery in Databases),andis a subjectat theboundariesof
statistics,engineering,machinelearningandcomputerscience.

Finding Needles in Haystacks:

Finding unusual patterns
in large data sets

Data Mining Principles 1

Witten & Franke (2000)Data Mining: Practical Machine Learning Tools
with Java Implementations:

Datamining is aboutsolvingproblemsby analyzingdataalreadypresentin
databases.

Datamining is definedastheprocessof discoveringpatternsin data.

Theprocessmustbeautomaticor (moreusually)semi-automatic.

The patternsdiscovered must be meaningful in that they lead to some
advantage,usuallyaneconomicadvantage.

Thedatais invariablypresentin substantialquantities.

It is aboutfindinganddescribingstructuralpatternsin data.

And mostof the techniqueswe cover have developedin a field known as
machine learning.



Data Mining Principles 2

Hand,Mannila& Smyth(2001)Principles of Data Mining:

Thescienceof extractingusefulinformationfrom largedatasets
or databasesis known asdatamining.

Datamining is the analysisof (often large) observationaldata
setsto find unsuspectedrelationshipsandto summarizethedata
in novel waysthatarebothunderstandableandusefulto thedata
owner.

The statistical readermay be inclined to say “well this data
mining materialseemsvery similar in many ways to a course
in appliedstatistics!”.And this is indeedsomewhatcorrect. . . .

Statistical Data Mining

This is a talk on statistical datamining. As suchwe will not cover theas-
pectsof datamining thatareconcernedwith queryingvery largedatabases,
althoughbuilding efficient databaseinterfacesto statisticalsoftwareis be-
cominganimportantareain statisticalcomputing.

We will alwaysneedto bearin mind the‘datadredging’aspectof theterm.
When (literally) mining or dredging,the proportion of good material to
drossis usuallyvery low, andwhenmining for mineralscanoften be too
low to cover thecostsof extraction.

Exactly the sameissuesoccur in looking for structurein ‘small’ data: it
is all too easyto find structurethat is only characteristicof the particular
set of data to hand. We want generalization in the terminology of the
psychologists,that is to find structurethat will help with future examples
too.

To paraphraseprovocatively, ‘machine learning is statistics minus any
checkingof modelsandassumptions’.

Suchphrasesareto a largeextent fashion,andfinding structurein datasets
is emphaticallynot anew activity. In thewordsof Witten& Franke (p. 26)

What’s the differencebetweenmachinelearningandstatistics?
Cynics, looking wryly at the explosionof commercialinterest
(and hype) in this area,equatedata mining to statisticsplus
marketing.

What is new is the scaleof databasesthat arebecomingavailablethrough
thecomputer-basedacquisitionof data,eitherthroughnew instrumentation
(fMRI machinescancollect100Mbof imagesin ahour’ssession)or through
the by-productof computerisedaccountingrecords(for example,spotting
fraudulentuse of credit cardsor telephones,linking salesto customers
through‘loyalty’ cards).

‘Large Databases’

Whatis ‘large’ aboutlargedatabasesasusedin datamining?
Normally justoneof two aspects

• Many cases

– motor insurancedatabasewith 66 million drivers (about1/3 of
all USdrivers).

– Salesdatafrom Amazon,or anairline.

– Credit-cardtransactions.

• Many observations

– screening10,000+genes.

– fMRI SPM mapof t statisticsfor 100,000voxels (per session,
with lessthan100sessions).

An unusualexamplewhich hasboth is so-calledCRM, e.g. supermarket
salesrecords.Notethepredominanceof discreteobservations.



Necessary Assumptions

In many (most?)caseswe have lots (thousandsto millions) of observations
onafew subjects.Linearmethodssuchasprincipal component analysis are
notgoingto bewell-determined.

Thereis an implicit assumptionof a simple explanation. It is like model
selectionin regression:out of many regressorswe assumethat only a few
areacting,individually or in combination.

Finding the geneticbasisfor say, a disease,is like this. We screena few
hundredpeoplefor 10,000(even ‘all’ 30,000)genes.We have to assumeat
mosta handfulof genesareinvolved.

Thereis alsoaselectionof clusteringalgorithms,thefirst of which is called
‘EM’ (andnot in theTed Harding/Tony Rossinisense— EM iswidely used
in engineeringfieldsto meanfitting mixturedistributions,a taskbetterdone
in otherways).

‘and Methods’

What are the methodscommonlyconsideredas part of datamining (and
which Witten& Franke claimare‘developed’in machinelearning)?

• Rudimentaryrule induction

• Statisticalmodelling,mainlyNäıve Bayes.

• Decisiontrees

• Ruleinduction(via trees)

• Associationrules

• Linearmodels

• ‘Instance-basedlearning’(nearest-neighbours)

Their software,WEKA, coversavarietyof treemethods(includingrandom
treesand randomforests),somesimpleBayesmethods,linear, LMS and
logistic regression,neuralnetworks (including RBF nets),rule induction,
anda hostof ‘meta’ methodssuchasbagging,boostingandstacking.

Methods in R

R is pretty well off for thesemethods,althoughthat reflectsthe research
andteachinginterestsof a tiny numberof contributors.Apart from baseR,
considerpackagesclass, e1071, mclust, nnet, rpart, tree (andmany
others).

BecauseR is a programmableenvironment,it is easyto implementa meta-
method,if TorstenHothorn and colleagueshave not alreadygot there in
packageipred.

Another areathat is mentionedin both booksis visualizing data mining.
BaseR hasmany of thetechniquesmentioned(includingPCA anddensity
estimation)andtheVR bundlehasmostof therest(MDS, SOM).

Themajorlack is rule induction,especiallyassociationrules.Thatis almost
certainly not accidental,but R also lacks the methodssocial statisticians
useto handlelarge setsof categorical variables,possiblyincluding latent
(continuousor categorical)variables.



The Seduction of Non-linearity

Why use non-linear methods suchasneuralnetworks,tensorsplines,GAMs,
classificationtrees,supportvectormachines,. . . ?

• Becausethecomputationhasbecomefeasible

• Becausesomeof themareheavily promoted

• Becausethescopeof linearmethodsis little understood(interactions)

• Becausea little non-linearityleadsto universalapproximators

• Becausethereis money in it!

Usedwell they canout-performoldermethods.

Usedby non-expertsthey canseriouslyunder-performoldermethods.

Non-linear visualization methods(multidimensionalscaling, Kohonen’s
SOM) areunder-used.

Needles in Haystacks

Theanalogyis ratherhelpful. We probablyknow whatthe‘hay’ lookslike.
If we really know what‘needles’look like, thetaskis purelycomputational
patternmatching.But in practicewe either

• have seensomepastexamplesof needles:supervisedpatternrecogni-
tion, or

• are interestedin anything which is not hay: unsupervisedpattern
recognition.

or just possiblyboth. The secondis muchharder, andreally we areonly
interestedin somedepartures(e.g. in fraud detectionin thosewhich may
looseusincome).

Don’t Forget the Rest of Statistics

Normalstatisticalthinking is at leastasimportant,including

• Sensibleexperimentaldesign

• Datavisualization

• Outlier detection

• Robustification

• Checkingof assumptions

• Performanceassessment

Magnetic Resonance Imaging examples

Jointwork with JonathanMarchini.

Part 1: Magnetic Resonance Imaging of Brain Structure

Data,backgroundandadviceprovidedby PeterStyles(MRC Biochemical
andClinical MagneticResonanceSpectroscopy Unit, Oxford)

Part 2: Statistical Analysis of Functional MRI Data

Data,backgroundandadviceprovided by StephenSmith (Oxford Centre
for FunctionalMagneticResonanceImagingof theBrain) andNick Lange
(McLeanHospital,Harvard).



Magnetic Resonance Imaging Some Data

T1 (left) andT2 (right) MRI sectionsof a ‘normal’ humanbrain.

Thissliceis of 172× 208 pixels. Imagingresolutionwas 1 x 1 x5 mm.

Neurological Change

Interest is in the changeof tissuestateand neurologicalfunction after
traumaticeventssuchasa stroke or tumourgrowth andremoval. The aim
hereis to identify tissueasnormal,impairedor dead,andto compareimages
from a patienttakenover a periodof severalmonths.

Our initial task was exploring ‘T1’ and ‘T2’ images(the conventional
MRI measurements)to classify brain tissueautomatically, with the aim
of developing ideasto be appliedto spectroscopicmeasurementsat lower
resolutions.

Considerimage to be madeup of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro–spinalfluid) and‘skull’.

Initial aim is reliable automaticsegmentation. Sinceapplied to a set of
patientsrecoveringfrom severeheadinjuries.

Datafrom thesameimagein T1–T2 space.



Modelling

Our basicmodelis

log Yij = µ + βclass(ij) + s(i, j) + εij

for theintensityatvoxel (i, j), studiedindependentlyfor eachof theT1 and
T2 responses.Heres(x, y) is a spatiallysmoothfunction.

Of course,the equationdependson the classification,which will itself
dependon the predictedbias field. This circularity is solved by iterative
procedure,startingwith nobiasfield.

Fits of bias fields

Fitted‘biasfields’ for T1 (left) andT2 (right) images.

Thebiasfieldsfor theseimagesarenotlargeandchangeintensityby5–10%.

Estimation

If the classificationwereknown we would usea robust methodthat fits a
long-taileddistribution for εij, unconstrainedtermsβc for eachclass,and
a ‘smooth’ function s. We copewith unknown classin two ways. In the
earlystagesof theprocesswe only includedatapointswhoseclassification
is nearlycertain,andlaterwe use

log Yij = µ +
∑

classc

βc p(c |Yij) + s(i, j) + εij

that is, we averagethe classterm over the posteriorprobabilitiesfor the
currentclassification.

For thesmoothterms weinitially fitteda lineartrendplusasplinemodelin
thedistancefrom thecentralaxisof themagnet,but this did not work well,
so we switchedto loess. Loessis basedon fitting a linear surfacelocally
plusapproximationtechniquesto avoid doingfor theorderof 27000fits.

Modelling the data

Eachdatapoint (representinga pixel) consistsof oneT1 andoneT2 value

Observationscomefrom a mixture of sourcesso we usea finite normal
mixturemodel

f(y; Ψ) =

g∑

c=1

πcφ(y; µc, Σc)

where the mixing proportions,πc, are non-negative and sum to one and
whereφ(y; µc, Σc) denotesthe multivariatenormalp.d.f with meanvector
µ andcovariancematrixΣ.

This is appliedto bias-correcteddata.



Application/Results

6 componentmodel

• CSF

• Whitematter

• Grey matter

• Skull type1

• Skull type2

• Outlier component(fixedmeanandlargevariance)

Initial estimateschosenmanuallyfrom oneimageandusedin the classifi-
cationof otherimages.

Classificationimage(left) andassociatedT1/T2 plot (right), trainingthe6-component

mixturemodelfrom its fit on thereferencesubject.

A Second Dataset

T1 (left) andT2 (right) MRI sectionsof another‘normal’ humanbrain.

Outliers and anomalies

We have found our schemeto be quite robust to variation in imaging
conditionsandto different‘normal’ subjects.The‘background’classhelps
greatlyin achieving this robustnessasit ‘mopsup’ theobservationswhich
do notagreewith themodel.

However, outlierscanbemoreextreme:



T1–T2 plot of a brainsliceof a brainwith a pathology.

‘Functional’ MRI

FunctionalPET (positronemissionspectroscopy: needsa cyclotron) and
MRI areusedfor studiesof brain function: give a subjecta taskandsee
which area(s)of thebrain‘light up’.

fMRI hasa higherspatialandtemporalresolution.Most commonlystimuli
areappliedfor a periodof 10–30secs,imagestaken aroundevery 3 secs,
with several repeatsof thestimulusbeingavailablefor onesubject.Down
to 1 × 1× 3 mm voxels.

This illustratesthedangersof classifyingall thepoints.Thisis aparticularly
commonmistake whenneuralnetworksareusedfor classification,andwe
have seenMRI brain scansclassifiedby neuralnetworks wherecommon
sensesuggestedan‘outlier’ reportwas theappropriateone.

The procedurepresentedherealmostentirely ignoresthe spatialnatureof
theimage.For somepurposesthiswouldbeaseverecriticism,ascontextual
classificationwould be appropriate.However, our interestin theseimages
is not a prettypicturebut is indeedin theanomalies,andfor thatwe prefer
to staycloseto the raw data. The other interestis in producingsummary
measuresthatcanbecomparedacrosstime.
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A realresponse(solid line) from a 100-scan(TR=3sec)datasetin anareaof activation
from thevisualexperiment.Theperiodicboxcarshapeof thevisualstimulusis shown

below.



The commonlyaddressedstatisticalissueis ‘has the brain statechanged’,
andif sowhere?

Left: A painexperiment.Bluebeforedrugadministration,greenafter, yellow both.

Right: A verbal/spatialreasoningtest,averagedover 4 subjects.12 slices,readrow-

wisefrom bottomof headto top. Blue=spatial,red=verbal.

A Closer Look at some Data

A 10× 10 grid in anareaof slice5 containingactivation.

Multiple comparisons

Finding the voxel(s) with highest‘ t’ valuesshoulddetectthe areasof the
brainwith mostchange,but doesnotsaythey aresignificantchanges.Thet

distributionmight applyatonevoxel, but it doesnotapplyto thevoxel with
thelargestresponse.

Conventionalmultiple comparisonmethods(e.g. Bonferroni) may over-
compensateif thevoxel valuesarefar from independent.

Threemainapproaches:

1. Randomization-basedanalysis(Holmeset al) acrossreplications.

2. (High) level crossingsof Gaussianstochasticprocesses
(Worsley et al): Euler characteristics.

3. Variability within thetimeseriesata voxel.

We only discussthethird here.

Principles of Our Analyses

• Work with raw data.

• Non-parametricrobustde-trending,Winsorizingif required.

• Work in spectraldomain.

• Matcha filter to theexpectedpatternof response(squarewave input,
modifiedby thehaemodynamicresponse).

• Non-parametricsmoothestimationof the noisespectrumat a voxel,
locally smoothedacrossvoxels.

• Responsenormalizedby the noisevarianceshouldbe Gumbel(with
known parameters)on log scale.

This producedmuchmoreextremedeviationsfrom the backgroundvaria-
tion, andcompactareasof response.ca10 minutesfor a wholebrain(in R
on a1GhzPC).



Log absfilteredresponse,with small valuescolouredasbackground(red). Threshold

for displayis p < 10−5 (andthereareca20,000voxelsinsidethebrainhere).

Plotting p values

p-valueimageof slice5
thresholdedto show
p-valuesbelow 10−4 and
overlaidontoanimageof
theslice.Coloursindicate
differentialresponses
within eachcluster. An
areaof activationis shown
in thevisualcortex, aswell
asa single‘f alse-positive’,
thatoccursoutsideof the
brain.
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Trend-removal
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A voxel timeseriesfrom thedatasetshowing anobviousnon-lineartrend.

We useda running-linessmootherrejectingoutliers (andWinsorizing the
results).

Calibration

Before we worry aboutmultiple comparisons,are the t-statistics(nearly)
t-distributed?

Few peoplehavebotheredto check,andthosewhodid (Bullmore,Brammer
et al, 1996)foundthey werenot.

We can use null experimentsas
somesortof check.
In our analysiswe can useother
frequenciesto self-calibrate,but
we don’t needto:
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Conclusions

• Look at your data(even if it is on this scale: millions of pointsper
experiment).

• Data‘cleaning’ is vital for routineuseof suchprocedures.

• You needto be surethat the processis reliable,asno onecancheck
on thisscale.

• Successfuldatamining very oftendependson makingtheright high-
level assumptionsanddesigningthestudywell enough.

• It is amazingwhatcanbedonein high-level languagessuchasR on
cheapcomputers.


