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Finding Needles in Haystacks:

Finding unusual patterns
In large data sets

Data Mining & Data Dredging

Fifteenyearsagodata mining was a pejoratve phraseamongsstatisticians,
but the Englishlanguageevolvesandthatsensdas now encapsulateth the
phrasedata dredging.

In its current sensedata mining meansfinding structurein large-scale
databases.

It is oneof mary newly-populartermsfor this actiity, anothetbeingkKDD
(KnowledgeDiscovery in Databases)ndis a subjectat the boundarief
statistics engineeringmachineearningandcomputerscience.

Data Mining Principles 1

Witten & Franle (2000) Data Mining: Practical Machine Learning Tools
with Java I mplementations:

Dataminingis aboutsolving problemsby analyzingdataalreadypresenin
databases.

Dataminingis definedasthe processf discovering patternsn data.
Theprocessnustbe automaticor (moreusually)semi-automatic.

The patternsdiscorered must be meaningfulin that they lead to some
adwantagepsuallyaneconomicadwantage.

Thedatais invariably presentin substantiafuantities.

It is aboutfinding anddescribingstructuralpatternsn data.

And mostof the techniquesve cover have developedin a field known as
machine learning.



Data Mining Principles 2

Hand,Mannila& Smyth(2001)Principles of Data Mining:

Thescienceof extractingusefulinformationfrom large datasets
or databasess known asdatamining.

Datamining is the analysisof (often large) obsenational data
setsto find unsuspectecelationshipsandto summarizeéhe data
in novel waysthatarebothunderstandablandusefulto thedata
owner.

The statisticalreadermay be inclined to say “well this data
mining materialseemsvery similar in mary waysto a course
in appliedstatistics!”. And thisis indeedsomeavhatcorrect. . ..

Suchphrasesareto alarge extentfashion,andfinding structurein datasets
is emphaticallynot a new activity. In thewordsof Witten & Franle (p. 26)

What's the differencebetweenmachinelearningand statistics?
Cynics, looking wryly at the explosion of commercialinterest
(and hype) in this area, equatedata mining to statisticsplus

marketing.

Whatis new is the scaleof databasethatare becomingavailablethrough
the computerbasedacquisitionof data,eitherthroughnew instrumentation
(fMRI machinegancollect100Mbof imagesn ahour’ssessionpr through
the by-productof computerisecaccountingrecords(for example, spotting
fraudulentuse of credit cardsor telephonesjinking salesto customers
through‘loyalty’ cards).

Statistical Data Mining

This is atalk on statistical datamining. As suchwe will not cover the as-
pectsof datamining thatareconcernedvith queryingvery large databases,
althoughbuilding efficient databasénterfacesto statisticalsoftwareis be-
cominganimportantareain statisticalcomputing.

We will alwaysneedto bearin mind the ‘datadredging’aspecbf theterm.
When (literally) mining or dredging, the proportion of good materialto
drossis usually very low, andwhenmining for mineralscan often be too
low to cover the costsof extraction.

Exactly the sameissuesoccur in looking for structurein ‘small’ data: it
is all too easyto find structurethatis only characteristicof the particular
set of datato hand. We want generalization in the terminology of the
psychologiststhatis to find structurethat will help with future examples
too.

To paraphraseprovocatiely, ‘machine learning is statisticsminus ary
checkingof modelsandassumptions’.

‘Large Databases’

Whatis ‘large’ aboutlarge databaseasusedin datamining?
Normally justoneof two aspects

e Many cases

— motor insurancedatabaseavith 66 million drivers (about1/3 of
all US drivers).

— Salesdatafrom Amazon,or anairline.
— Credit-cardtransactions.

e Marny obsenations
— screenindl0,000+genes.

— fMRI SPM map of ¢ statisticsfor 100,000voxels (per session,
with lessthan100sessions).

An unusualexamplewhich hasboth is so-calledCRM, e.g. supermarkt
salegrecords.Notethe predominancef discreteobsenations.



Necessary Assumptions

In mary (most?)casesve have lots (thousandso millions) of obsenations
onafew subjectsLinearmethodssuchasprincipal component analysis are
notgoingto bewell-determined.

Thereis animplicit assumptiorof a simple explanation. It is like model
selectionin regression:out of mary regressorsve assumehatonly a few
areacting,individually or in combination.

Finding the geneticbasisfor say a diseasejs like this. We screena few
hundredpeoplefor 10,000(even ‘all’ 30,000)genes.We have to assumeat
mosta handfulof genesareinvolved.

‘and Methods’

What are the methodscommonly consideredas part of datamining (and
which Witten & Franle claim are‘developed’in machinelearning)?

e Rudimentaryrule induction
Statisticalmodelling,mainly Naive Bayes.

Decisiontrees
e Ruleinduction(via trees)

Associationrules

e Linearmodels
¢ ‘Instance-basetkbarning’ (nearest-neighbours)

Their software, WEKA, coversa variety of treemethodgincludingrandom
treesand randomforests),somesimple Bayesmethods linear, LMS and
logistic regression,neuralnetworks (including RBF nets), rule induction,
andahostof ‘meta’ methodssuchasbagging,boostingandstacking.

Thereis alsoa selectionof clusteringalgorithms thefirst of whichis called
‘EM’ (andnotin the Ted Harding/Tony Rossinisense— EM iswidely used
in engineerindieldsto meanfitting mixturedistributions,ataskbetterdone
in otherways).

Methods in R

R is pretty well off for thesemethods,althoughthat reflectsthe research
andteachinginterestsof atiny numberof contributors. Apart from baseR,
considerpackageslass, e1071, mclust, nnet, rpart, tree (andmary
others).

BecauseR is a programmableenvironment,it is easyto implementa meta-
method,if TorstenHothornand colleagueshave not alreadygot therein
packageipred.

Another areathat is mentionedin both booksis visualizing data mining.
BaseR hasmary of thetechniquesnentioned(including PCA anddensity
estimation)andthe VR bundlehasmostof therest(MDS, SOM).

Themajorlackis ruleinduction,especiallyassociatiomules. Thatis almost
certainly not accidental,but R also lacks the methodssocial statisticians
useto handlelarge setsof categyorical variables,possiblyincluding latent
(continuousor categorical) variables.



The Seduction of Non-linearity

Why use non-linear methods suchasneuralnetworks,tensorsplines GAMs,
classificatiortrees supportvectormachines, .. ?

Becausdghe computatiorhasbecomdeasible

Becausesomeof themareheavily promoted

Becauséhe scopeof linearmethodss little understoodinteractions)

Becausae little non-linearityleadsto universalapproximators

Becausehereis monegy in it!

Usedwell they canout-performolder methods.

Usedby non-epertsthey canseriouslyunderperformoldermethods.

Non-linear visualization methods (multidimensionalscaling, Kohonens
SOM) areunderused.

Don’t Forget the Rest of Statistics

Normalstatisticalthinking is atleastasimportant,including

Sensibleexperimentaldesign

Datavisualization

Outlier detection

e Rohustification

Checkingof assumptions

Performanceassessment

Needles in Haystacks

Theanalogyis ratherhelpful. We probablyknow whatthe ‘hay’ lookslike.
If we really know what‘needles’look like, thetaskis purely computational
patternmatching.But in practicewe either

e have seensomepastexamplesof needlessupervisegatternrecogni-
tion, or

e are interestedin arnything which is not hay: unsupervisedattern
recognition.

or just possiblyboth. The secondis muchharder and really we are only
interestedn somedeparturege.g. in fraud detectionin thosewhich may
looseusincome).

Magnetic Resonance Imaging examples
Jointwork with JonatharMarchini.
Part 1: Magnetic Resonance Imaging of Brain Structure

Data,backgroundandadviceprovided by PeterStyles(MRC Biochemical
andClinical MagneticResonanc&pectroscop Unit, Oxford)

Part 2: Statistical Analysis of Functional MRI Data

Data, backgroundand advice provided by StephenSmith (Oxford Centre
for FunctionalMagneticResonancémagingof the Brain) andNick Lange
(McLeanHospital,Harvard).



Magnetic Resonance Imaging
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Neurological Change

Interestis in the changeof tissue state and neurologicalfunction after

traumaticeventssuchasa stroke or tumourgrowth andremoval. Theaim

hereis to identify tissueasnormal,impairedor dead andto comparémages
from a patienttakenover a periodof severalmonths.

Our initial task was exploring ‘T1’ and ‘T2’ images(the corventional
MRI measurementso classify brain tissue automatically with the aim
of developingideasto be appliedto spectroscopiecneasurementat lower
resolutions.

Considerimage to be madeup of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro—spinalluid) and‘skull’.

Initial aim is reliable automaticsegmentation. Since appliedto a set of
patientsrecovering from severeheadinjuries.

Some Data

T1 (left) and T2 (right) MRI sectionof a ‘normal’ humanbrain.
Thissliceis of 172 x 208 pixels. Imagingresolutionwas 1 x 1 X5 mm.
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Modelling

Our basicmodelis

log Yij = pt + Bojasgijy + 5(i,J) + €ij

for theintensityatvoxe (i, j), studiedindependentlyor eachof the T1 and
T2 responsesHeres(z, y) is a spatiallysmoothfunction.

Of course,the equationdependson the classification,which will itself
dependon the predictedbiasfield. This circularity is solved by iterative
procedurestartingwith no biasfield.

Estimation

If the classificationwere known we would usea robust methodthat fits a
long-taileddistribution for ¢;;, unconstrainederms 3, for eachclass,and
a ‘'smooth’ function s. We copewith unknavn classin two ways. In the
early stagef the processve only includedatapointswhoseclassification
is nearlycertain,andlaterwe use

log Vij =+ Y Beple|Yiy) + s(i, 5) + i)
classe
thatis, we averagethe classterm over the posteriorprobabilitiesfor the
currentclassification.

For thesmoothterm s weinitially fitted alineartrendplusasplinemodelin
the distancefrom the centralaxis of the magnetput this did not work well,
so we switchedto loess. Loessis basedon fitting a linear surfacelocally
plusapproximatiortechniquego avoid doingfor the orderof 27000fits.

Fits of bias fields

Fitted ‘biasfields’ for T1 (left) and T2 (right) images.

Thebiasfieldsfor theseémagesarenotlargeandchangentensityby 5-10%.

Modelling the data

Eachdatapoint (representing pixel) consistof oneT1 andoneT2 value

Obsenations come from a mixture of sourcesso we use a finite normal
mixture model

g
f(y LIJ) = Z 7T(t¢<y:, ey Z(?)
c=1
where the mixing proportions, ., are non-ngative and sumto one and

where¢(y; ., 2.) denoteghe multivariatenormal p.d.f with meanvector
1 andcovariancematrix >.

Thisis appliedto bias-correctediata.



Application/Results

6 componentnodel

e CSF

e White matter
e Grey matter
e Skulltypel

e Skulltype2

e Outlier componentfixed meanandlarge variance)

Initial estimateshosenmanuallyfrom oneimageandusedin the classifi-
cationof otherimages.

A Second Dataset

T1 (left) andT2 (right) MRI sectionsof anothernormal’ humanbrain.
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Classificationmage(left) andassociated 1/T2 plot (right), training the 6-component
mixturemodelfrom its fit onthereferencesubject.

Outliers and anomalies

We have found our schemeto be quite robust to variation in imaging
conditionsandto different'normal’ subjects.The ‘background’classhelps
greatlyin achieving this robustnessasit ‘mopsup’ the obsenationswhich
do notagreewith themodel.

However, outlierscanbe moreextreme:
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T1-T2 plot of abrainslice of a brainwith a pathology

Thisillustratesthedangerf classifyingall thepoints. Thisis aparticularly
commonmistale whenneuralnetworks are usedfor classificationandwe
have seenMRI brain scansclassifiedby neuralnetworks wherecommon
sensesuggeste@dn ‘outlier’ reportwas theappropriateone.

The procedurepresentedherealmostentirely ignoresthe spatialnatureof
theimage.For somepurposeshiswould bea severecriticism, ascontextual
classificationwould be appropriate.However, our interestin theseimages
is not a pretty picturebut is indeedin the anomaliesandfor thatwe prefer
to staycloseto the raw data. The otherinterestis in producingsummary
measureghatcanbe comparedacrosgdime.

‘Functional’ MRI

FunctionalPET (positronemissionspectroscop needsa cyclotron) and
MRI areusedfor studiesof brain function: give a subjecta taskand see
which area(s)f thebrain‘light up’.

fMRI hasa higherspatialandtemporalresolution.Most commonlystimuli
are appliedfor a period of 10—-30secs,imagestaken aroundevery 3 secs,
with several repeatsf the stimulusbeingavailablefor onesubject. Down
tol x 1 x 3 mmvoxels.
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A realresponsésolid line) from a 100-scar(TR=3sec)datasetn anareaof activation

from thevisualexperiment.The periodicboxcarshapeof the visual stimulusis shavn
below.



The commonlyaddressedtatisticalissueis ‘has the brain statechanged’, A Closer Look at some Data
andif sowhere?
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Left: A painexperiment.Blue beforedrugadministrationgreenafter, yellow both.
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Right: A verbal/spatiareasoningest, averagedover 4 subjects.12 slices,readrow-
wisefrom bottomof headto top. Blue=spatialred=\erbal.
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A 10 x 10 grid in anareaof slice5 containingactivation.

Multiple comparisons Principles of Our Analyses

Finding the voxel(s) with highest'¢’ valuesshoulddetectthe areasof the e Work with raw data.

brainwith mostchangeput doesnot saythey aresignificantchangesThet e Non-parametricobustde-trendingWinsorizingif required.
distribution might applyat onevoxel, but it doesnotapplyto the voxel with

e Work in spectraldomain.
thelargestresponse.

e Matchalfilter to the expectedpatternof responsésquarewvave input,

Corventional multiple comparisonmethods(e.g. Bonferroni) may over- modifiedby the haemodynamicesponse).

compensaté thevoxel valuesarefar from independent.
e Non-parametrismoothestimationof the noisespectrumat a voxel,

locally smoothedacrossvoxels.

1. Randomization-baseahalysis(Holmeset al) acrosseplications. o Responsaormalizedby the noisevarianceshouldbe Gumbel(with

2. (High) level crossingof Gaussiarstochastigprocesses known parameterspnlog scale.
(Worsley et al): Euler characteristics.

Threemainapproaches:

o _ _ This producedmuchmore extremedeviations from the backgroundvaria-
3. Variability within thetime seriesata voxel. tion, andcompactareasof responseca 10 minutesfor awhole brain (in R

. . onalGhzPC).
We only discusghethird here.
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Log absfiltered responsewith smallvaluescolouredasbackgroundred). Threshold
for displayis p < 10~° (andthereareca20,000voxelsinsidethebrainhere).

Trend-removal
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A voxel time seriesfrom the dataseshaving anohviousnon-lineartrend.

We useda running-linessmootherrejectingoutliers (and Winsorizing the
results).

p-valueimageof slice5
thresholdedo show
p-valuesbelon 10~* and
overlaidontoanimageof
theslice. Coloursindicate
differentialresponses
within eachcluster An
areaof activationis shavn
in thevisualcortex, aswell
asasingle‘false-positre’,
thatoccursoutsideof the
brain.

Plotting p values

Calibration
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Before we worry aboutmultiple comparisonsare the ¢-statistics(nearly)

t-distributed?

Few peoplehave botheredo check,andthosewho did (Bullmore,Brammer
et al, 1996)foundthey werenot.

We can use null experimentsas

somesortof check.

In our analysiswe can use other
frequenciesto self-calibrate, but

we don't needto:
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Conclusions

Look at your data(even if it is on this scale: millions of pointsper
experiment).

Data‘cleaning’is vital for routineuseof suchprocedures.

You needto be surethatthe processs reliable,asno one cancheck
onthisscale.

Successfutlatamining very often dependn makingtheright high-
level assumptionsinddesigningthe studywell enough.

It is amazingwhat canbe donein high-level languagesuchasR on
cheapcomputers.



