
Peter Dalgaard
First UseR! Conference

Vienna, May 2004

Language interfaces
.Call and .External

Introduction

� The .C and .Fortran functions are commonly used for
interfacing to numerical routines

� However, they have shortcomings for advanced use: Only
certain data types can be passed, and quite a bit of storage
allocation and data conversion happens in interpreted
code

� .Call and .External allow R objects to be passed to
and returned from compiled C code

This is an elementary introduction, but I shall assume that you
have a fairly good working knowledge of the C language.

1

Plan

� Differences between .C, .Call, and .External

� Basic usage

� Things to do in C code

– R object internals

– Accessing R vectors and creating new ones

– Dealing with internal list structures, expressions, etc.

– The garbage collector and how to keep things out of its
way

– The write barrier

– Parsing and evaluating R code

2

Synopsis of the interfaces
From “Writing R Extensions”:

.C("convolve",
as.double(a),
as.integer(length(a)),
as.double(b),
as.integer(length(b)),
ab = double(length(a) + length(b) - 1))$ab

.Call("convolve2", a, b)

.External("convolveE", a, b)

Notice that .C requires quite a lot of “red tape”, whereas the
others tend to be simpler (but of course they need to do the
same things, only on the C side).

3

.Call vs. .External

� Very similar. Identical on the R side; the C side of .Call
gets a fixed number of arguments, whereas .External
passes an argument list (of any length).

� .External is based on .Internal which is used for R
internals, but .Call the same access to R internals

� .Call has origins in S version 4. “Translation macros” (in
Rdefines.h) allow same code to work with both R and
S-PLUS

� The R source code (excl. recommended packages) has
many more calls to .Call than to .External but very
little use of the macros in Rdefines.h

4

An example of .External

From the tcltk package

SEXP RTcl_StringFromObj(SEXP args)
{ char *str;

str = Tcl_GetStringFromObj(
(Tcl_Obj *) R_ExternalPtrAddr(CADR(args)),
NULL);

return mkString(str);
}

Notice: CADR to get argument, mkString to make result an R
object.
The R interface is

tclvalue.tclObj <- function(x)
.External("RTcl_StringFromObj", x, PACKAGE="tcltk")

5

R object structures

� The SEXPREC and SEXP types (Symbolic EXPression
RECord/Pointer)

� (You’ll need to know about these, at least when
debugging)

� 22 subtypes, some esoteric. Mostly you need:

– vectors (LGLSXP, INTSXP, REALSXP, CPLXSXP,
STRSXP, VECSXP, EXPRSXP)

– list-alikes (LISTSXP, LANGSXP)

– symbols and strings (SYMSXP, CHARSXP)

6

Inside SEXPs

� Basically a SEXP is a header struct + a union construct

� A major special case is made of the VECTOR_SEXPREC
which uses a slightly shorter structure immediately
followed by data

� Other subtypes are generally a header plus a 3-pointer
structure (CAR/CDR/TAG for lists, formals/body/env
for functions, etc.)

7

Accessing and creating vector types
Excerpt from RTcl_ObjAsDoubleVector:

ans = allocVector(REALSXP, count);
for (i = 0 ; i < count ; i++){

ret = Tcl_GetDoubleFromObj(RTcl_interp, elem[i], &x);
if (ret != TCL_OK) x = NA_REAL;
REAL(ans)[i] = x;

}

Things to notice:

� REAL(ans) gives a pointer to the base of an array, which
can be indexed as usual

� NA_REAL to encode missing values

� Allocation with allocVector

8

Character vectors
Similar code from RTcl_ObjAsCharVector:

PROTECT(ans = allocVector(STRSXP, count));
for (i = 0 ; i < count ; i++)

SET_STRING_ELT(ans, i,
mkChar(Tcl_GetStringFromObj(elem[i], NULL)));

UNPROTECT(1);

Things to notice:

� Need to use mkChar() to generate CHARSXP object

� Need to use SET_STRING_ELT to change element of
vector (write barrier)

� Need to PROTECT

9

List-like structures

This requires a bit of explanation. . .

� R is internally based on Scheme, a variant of LISP

� “Lists” in R are really VECSXP objects (generic vector)

� Internally, we have LISTSXP objects, which are similar to
LISP lists

� These are (almost) invisible at the R level

� LANGSXP objects are structurally similar to LISTSXP;
EXPRSXP objects are like VECSXPs with (mostly)
LANGSXP elements

10

CAR and CDR
Lists, traditionally written (A B C), are constructed from
paired pointers (apologies for the graphics. . .)

+-------+
A <--|CAR|CDR|-+

+-------+ |
+-----+
v

+-------+
B <--|CAR|CDR|-+

+-------+ |
+-----+
v

+-------+
C <--|CAR|CDR|-+

+-------+ |
+-----+
v

NIL

11

But what is CAR and CDR?

� LISP folklore

� Holdover from early IBM 704 series computers
(vacuum-tube!)

� Content of Address Register

� Content of Decrement Register

� Terms sort of stuck, partly because of “cute” abbreviations
like CADDR(x) for CAR(CDR(CDR(x)))

12

Pairlists in R

� Argument lists (formal and actual)

� Calls (unevaluated)

� Actually, contains three pointers, carval, cdrval,
tagval

� The latter is used for named arguments, as in
f(a=1,b=2,3)

13

Handling argument lists in .External

For up to four fixed arguments, use CADR(lst),
CADDR(lst), CADDDR(lst), CAD4R(lst)

(CAR(lst) is the function name, so skipped)

for more than 4 arguments you might use a loop

for (p = CDR(lst); p != R_NilValue ; p = CDR(p)){
...
handle CAR(p)
...

}

Notice that for a fixed number of arguments with a fixed
meaning, you might as well use .Call.

14

Unevaluated code

� The kind returned from quote() or substitute()

� Can be a SYMSXP

� . . . or an atomic constant . . .
� . . . or a LANGSXP . . .

� . . . which is essentially a (pair-)list of the above element
types

� So, e.g. f(a,2+2) is internally represented as a list (f a

(+ 2 2))

15

Constructing lists
Use lst=CONS(CAR,CDR) or LCONS for LANGSXPs. Excerpt
from R_call in package tcltk

alist = R_NilValue;
for (i = argc - 1 ; i > 1 ; i--){

PROTECT(alist);
alist = LCONS(mkString(argv[i]), alist);
UNPROTECT(1);

}

fun = (SEXP) strtoul(argv[1], NULL, 16);

expr = LCONS(fun, alist);
expr = LCONS(install("try"), LCONS(expr, R_NilValue));

ans = eval(expr, R_GlobalEnv);

16

PROTECTing yourself

� R constantly creates and discards objects. So as not to run
out of memory, objects must be reclaimed periodically.

� When this happens, you had better hold on to objects that
you want to keep!

� A protection stack is maintained:
for (i = argc - 1 ; i > 1 ; i--){

PROTECT(alist);
alist = LCONS(mkString(argv[i]), alist);
UNPROTECT(1);

}

� PROTECT(obj) pushes the object onto the protection
stack. UNPROTECT(n) pops the top n objects off the stack.

17

What not to PROTECT

� In general it is better to PROTECT too often. If you miss a
PROTECT, you will have code that almost always runs

� On the other hand, superfluous protection may clutter the
code and make it hard to maintain

� You do not need to PROTECT

1. when you really don’t need the object any more

2. when the object is part of an object that is already
protected

3. across calls where no allocation is involved

18

The write barrier

� Did you wonder about the following difference?
REAL(ans)[i] = x;
SET_STRING_ELT(ans, i, x);

� Why not STRING(ans)[i] = x; ?
� Generational garbage collector: New objects more likely to be

reclaimed.

� Need to keep track of age and what happens when two
objects are combined.

� SET_STRING_ELT et al. constitute a write barrier.

� For efficiency, there is normally no verification that the
write barrier is not bypassed (configuration option).

19

Parsing and evaluating from C
From the R_eval command in the R-Tcl/Tk interface:

text = PROTECT(allocVector(STRSXP, argc - 1));
for (i = 1 ; i < argc ; i++)

SET_STRING_ELT(text, i-1, mkChar(argv[i]));

expr = PROTECT(R_ParseVector(text, -1, &status));
if (status != PARSE_OK) {....}

n = length(expr);
for(i = 0 ; i < n ; i++)

ans = eval(VECTOR_ELT(expr, i), R_GlobalEnv);

20

Demo
#include<Rdefines.h>
SEXP printargs(SEXP alist)
{

SEXP p, ans; int n;
for (p = alist, n = 0; p != R_NilValue ; p = CDR(p), n++)

PrintValue(CAR(p));
ans = allocVector(INTSXP, 1);
INTEGER(ans)[0] = n;
return ans;

}

R CMD SHLIB demo.c

dyn.load("demo.so")
.External("printargs",1,2,3:5,"hello")

21

Things that got skipped

— and how to move on

� Coercion

� S4 methods at C level

� Dealing with the context stack and environments

� Defining and accessing variables

� Check out “Writing R Extension”

� Look in the include files (beware of things that are sitting
in #ifndef USE_WRITE_BARRIER though!)

� Use the R-devel list

22

