Just-in-time Length Specialization of Dynamic Vector Code

Justin Talbot

Zachary DeVito

Pat Hanrahan

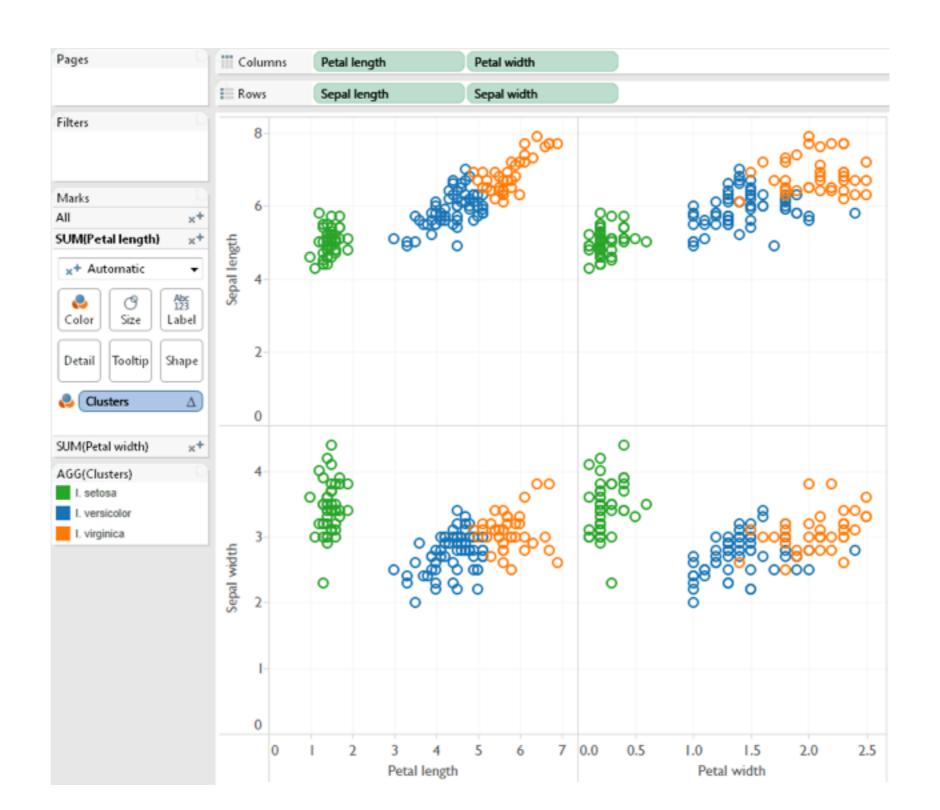
Tableau Research

Stanford University

(ARRAY 2014)

Tableau

Tableau + R



Riposte

- Bytecode interpreter and tracing JIT compiler for R
- Focused on
 - executing vector code well
 - using parallel hardware
- Written from scratch (how fast can it be? don't reason from incremental changes!)
- http://github.com/jtalbot/riposte
- http://purl.stanford.edu/ym439jk6562

What makes R's vectors hard?

They are semantically poor

How is it used?

- dynamically-allocated array?
- tuple?
- scalar?
- dictionary?
- tree?

What does it imply?

(If I know that a variable is a vector of length 4, what else can I figure out?)

- Usually very little!
- Recycling rule means that almost all vectors conform to each other

Riposte

- Project #1: Execute long vectors well (large dynamically-allocated arrays)
 - Deferred evaluation approach
 - Operator fusion/merging to eliminate memory bottlenecks
 - Parallelize execution of fused operators
- But...

Riposte

- Project #2: Execute short vectors well (scalars, tuples, short dynamically-allocated arrays)
 - Hot-loop just-in-time (JIT) compilation
 - (Partial) length specialization
 - Optimize based on lengths

Hot-loop JIT

- Hypothesis: if code has scalars or short vectors, computation time must be dominated by loops.
- Interpreter watches for expensive loops.
- When it finds one, compile machine code for loop, make assumptions that lead to optimizations (specialization)
- Guard against changes to assumptions

Hot-loop JIT

- Specialization
 - Assumptions should lead to big optimization wins (frequency * performance improvement)
 - Assumptions should be predictable (to amortize overhead)

Specialization

- Type specialization explored in other dynamic languages (Javascript, etc.)
- Length specialization is interesting in R
 - Eliminate recycling overhead
 - Store vector in register/stack instead of heap
 - Length-based optimizations (fusion, etc.)

Which length specializations make sense? (big win + predictable)

Length specializations?

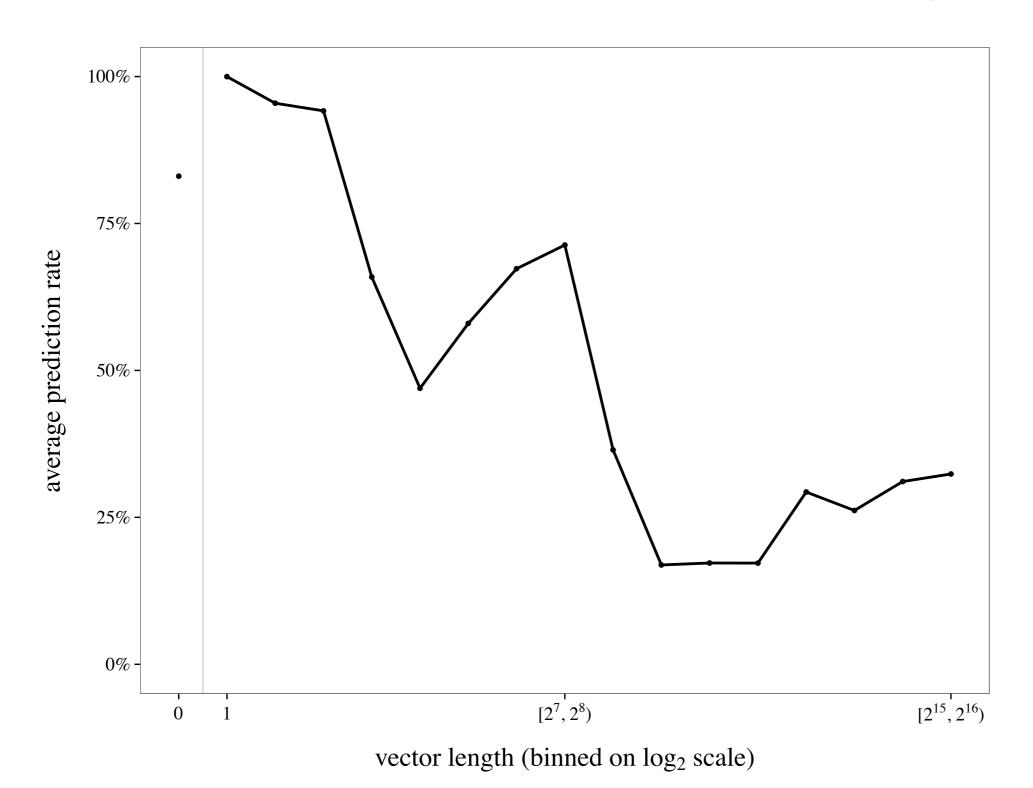
- Instrumented GNU R
- Recorded operand lengths of binary arithmetic operators
- Ran 200 vignettes, covering wide range of R application areas

Recycling rule?

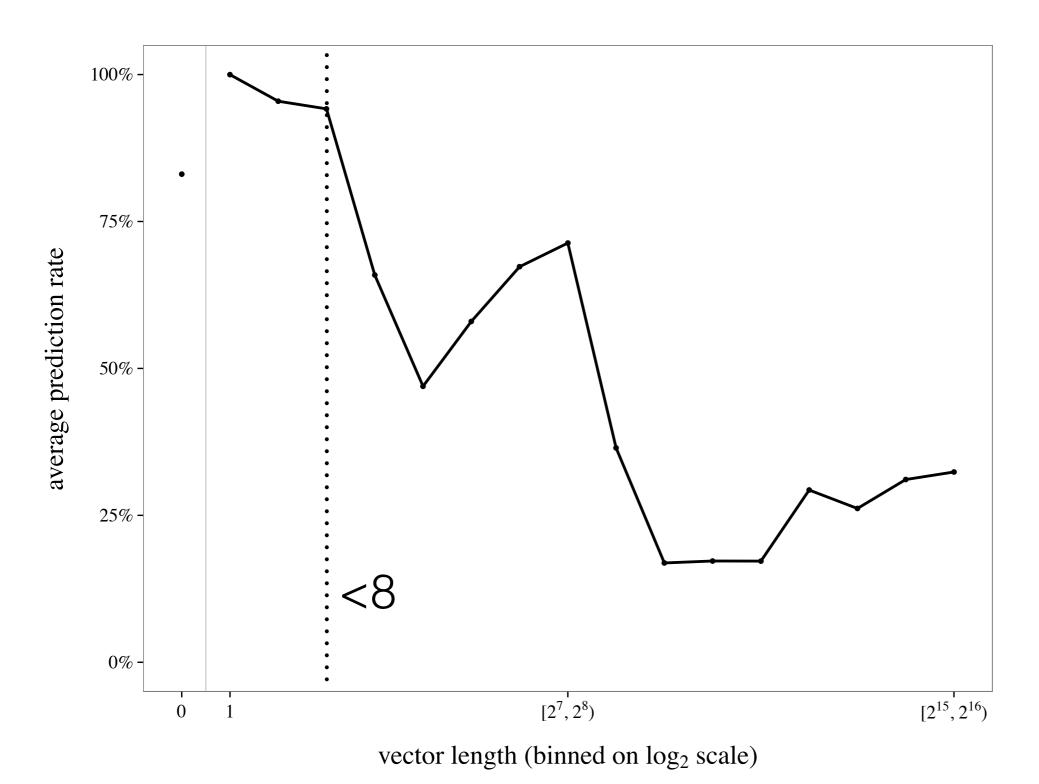
- In 92% of calls, operands are the same length
 - → Recycling overhead is frequently unnecessary
- Recycling is well predicted
 - Same lengths: 99.998%
 - Different lengths: 99.98%
 - Specialized code has a high probability of being reused

Predictable lengths?

Predictable lengths?



Predictable lengths?



Our strategy

Partial length specialization

- 1. Record loop using recycle instructions + abstract lengths
- 2. Eliminate *some* recycle instructions + introduce guards
 - Heuristic: Only specialize if the input lengths were equal while tracing and if both are loop carried or if both aren't
- 3. Specialize *some* abstract lengths to concrete lengths + introduce guards
 - Heuristic: Only specialize vectors with non-loop carried lengths <= 4

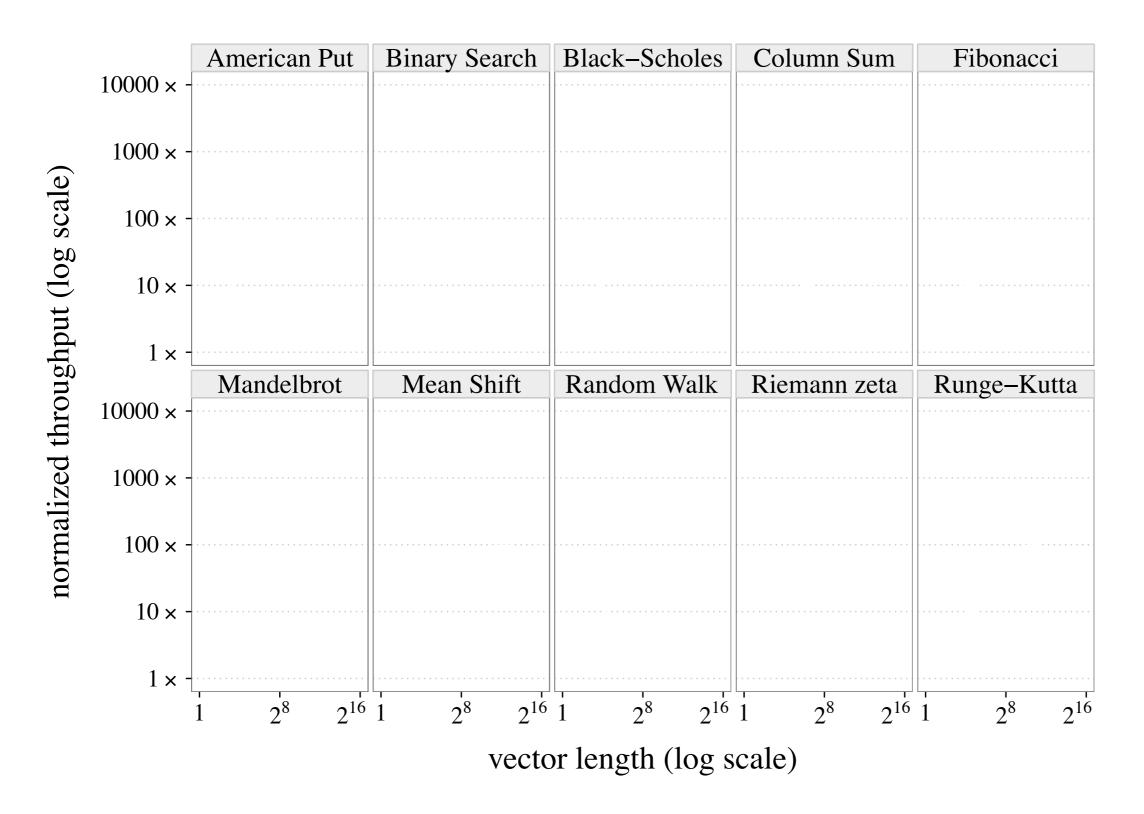
Length-based optimizations

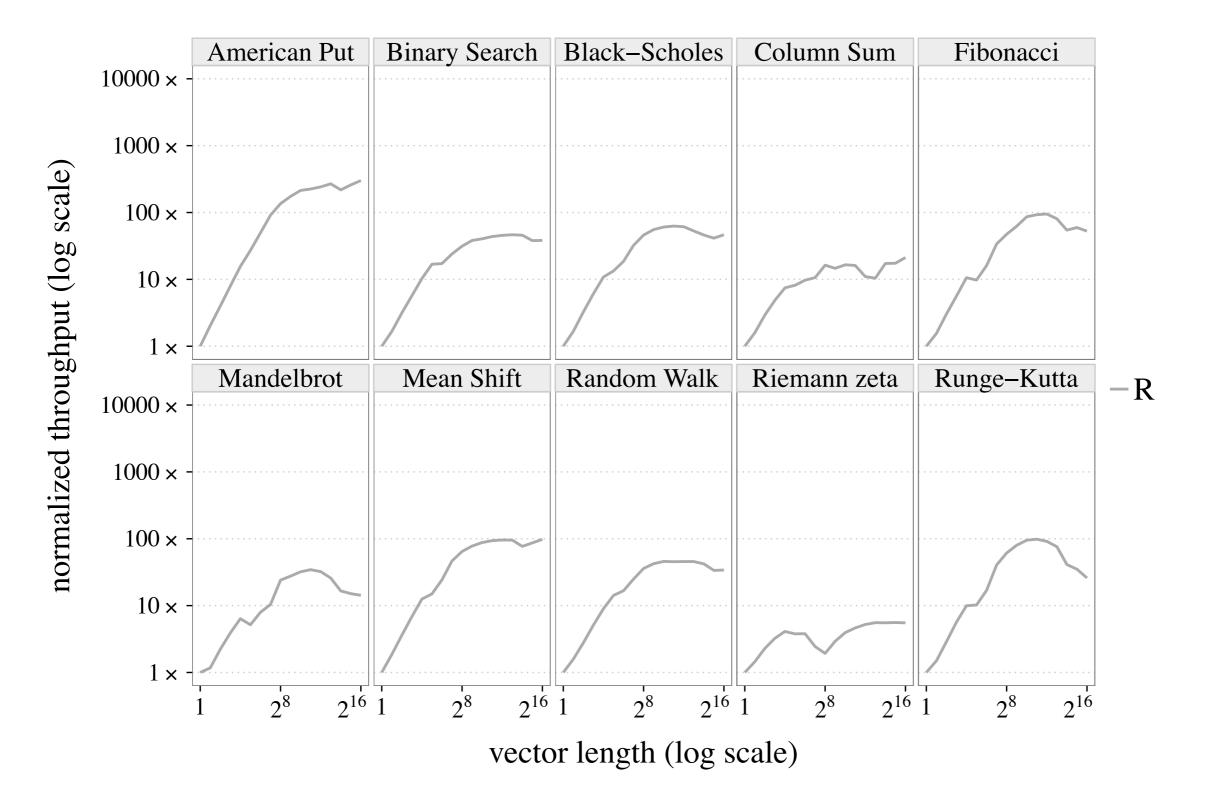
- Operator fusion (can't have intervening recycle operations)
- Vector "register allocation"
 - SSE registers (needs concrete lengths)
 - Shared stack/heap locations / eliminate copies (needs same lengths)

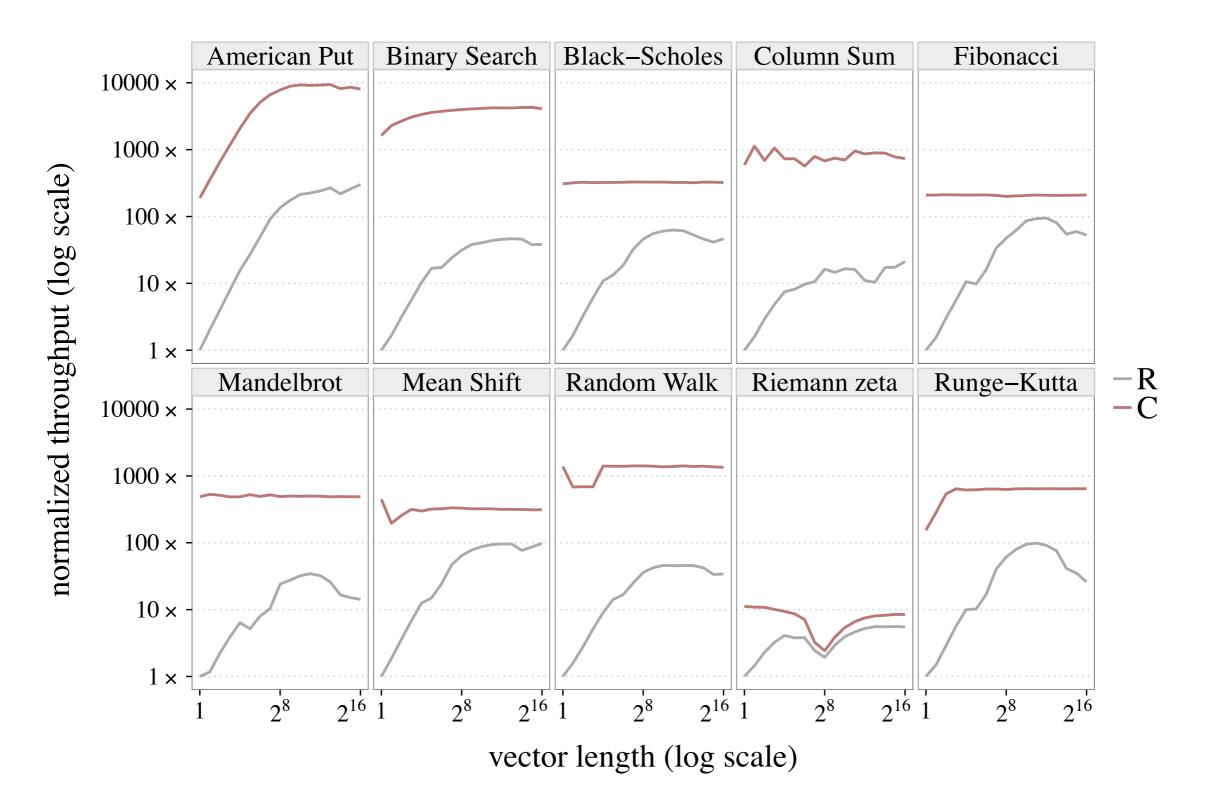
Evaluation

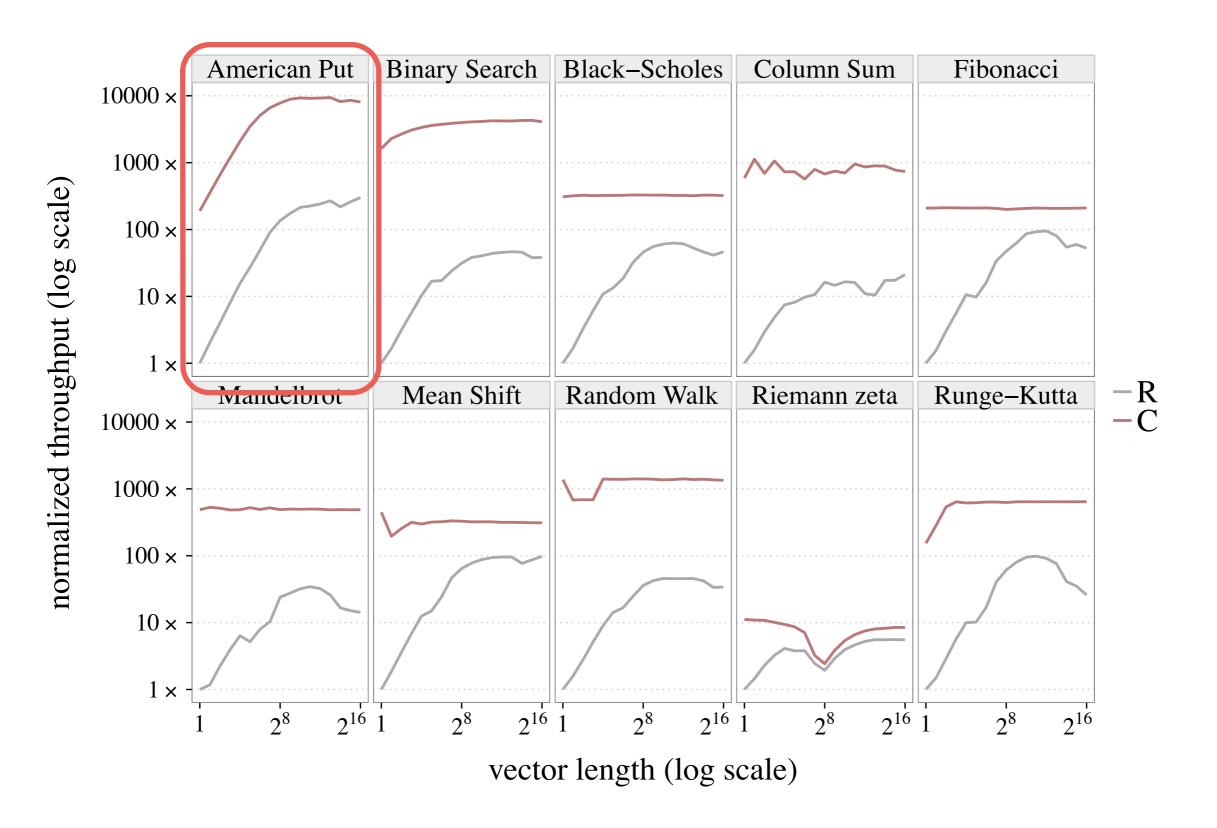
Evaluation

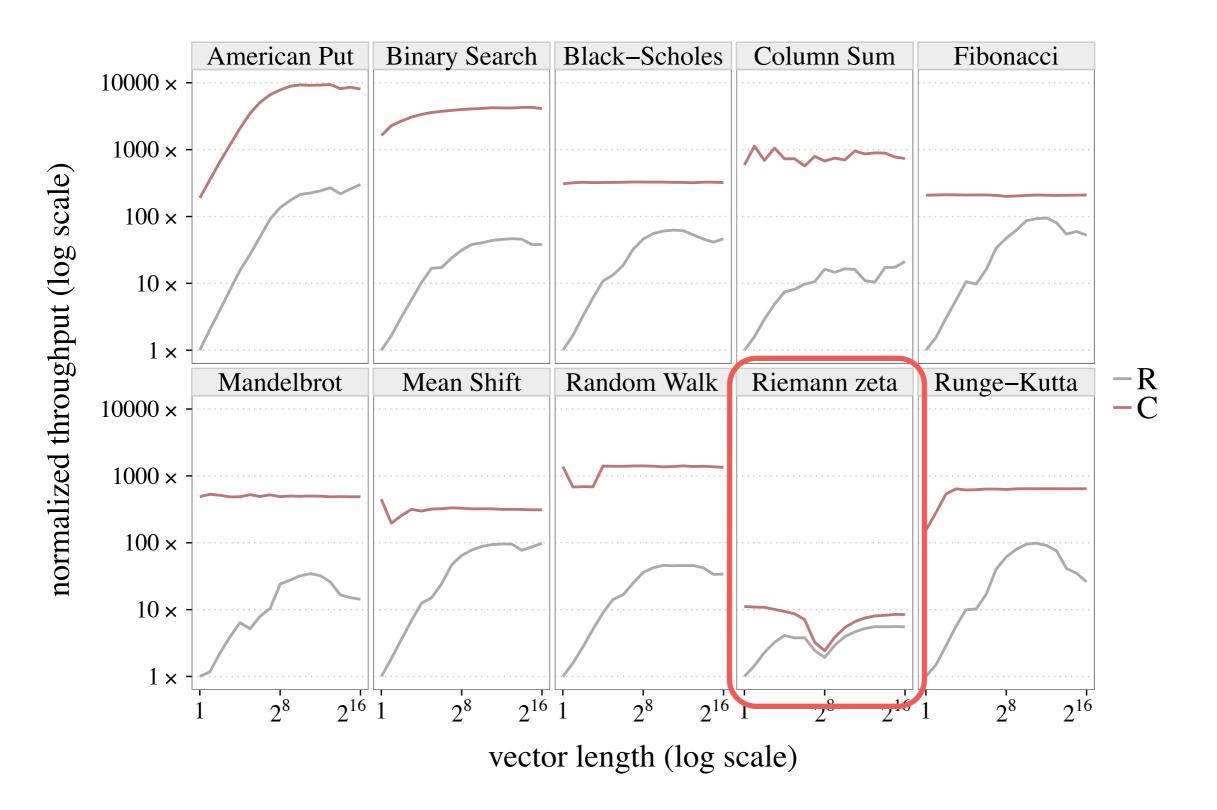
- Can we run vectorized code efficiently across a wide range of vector lengths?
 - 10 workloads, written in idiomatic R vectorized style so we can vary length of input vectors
 - Compare to GNU R bytecode interpreter & C (clang 3.1 - O3 + autovectorization)
 - Measure just execution time

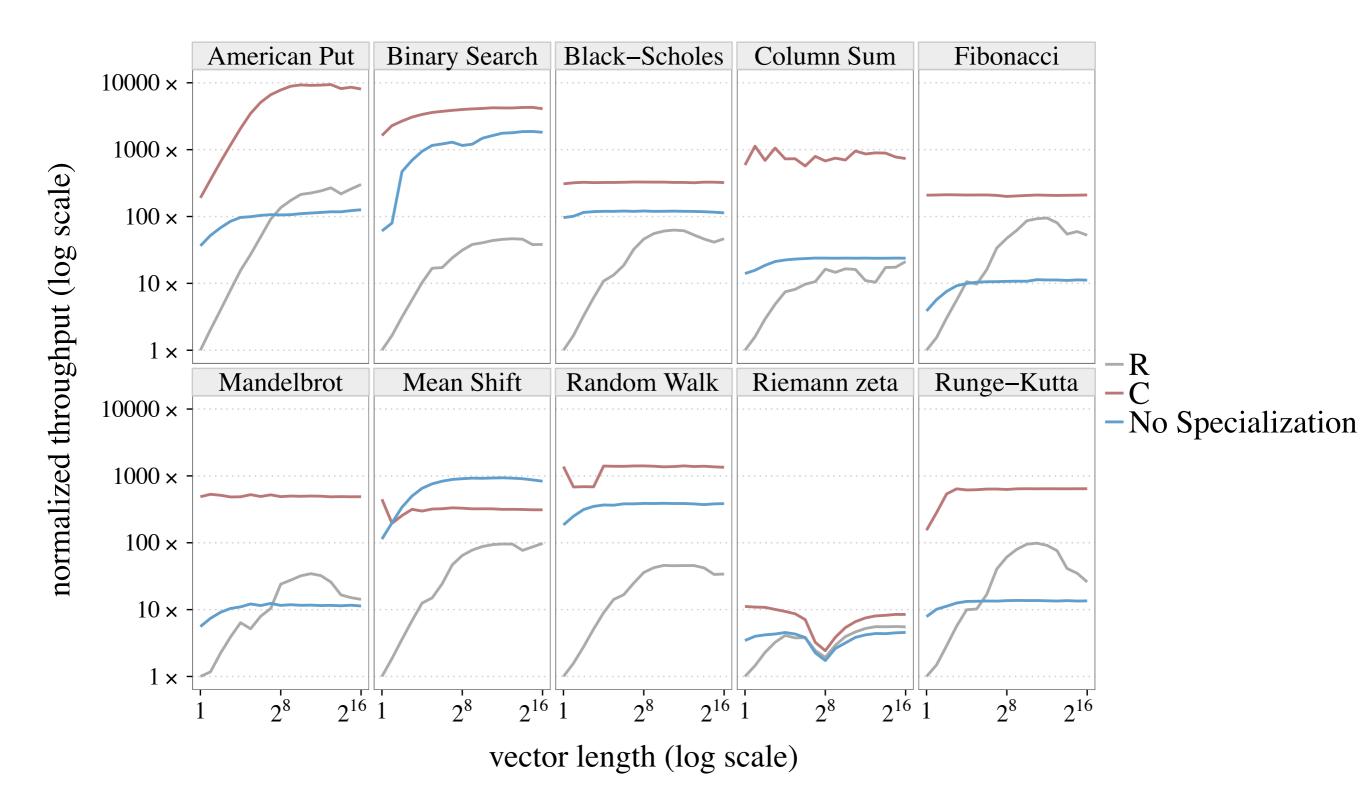


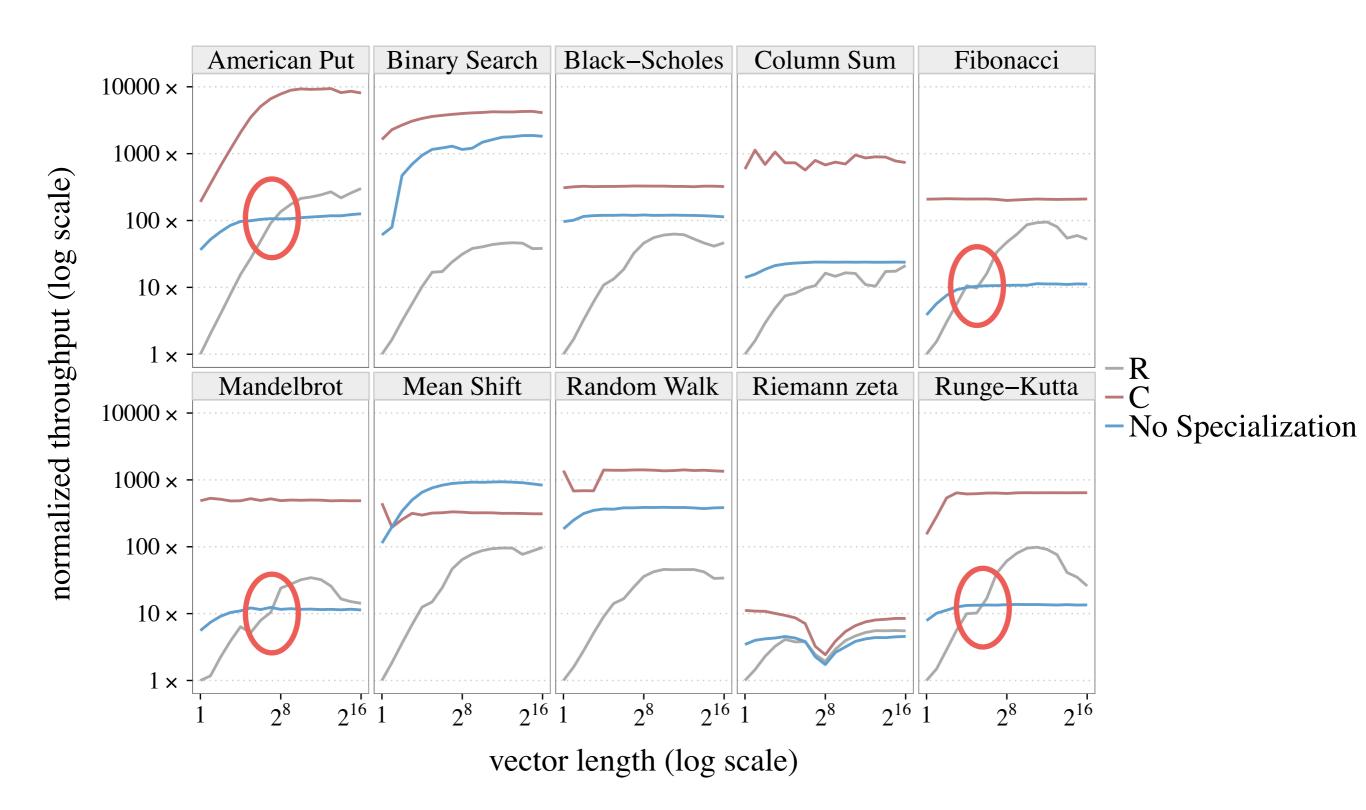


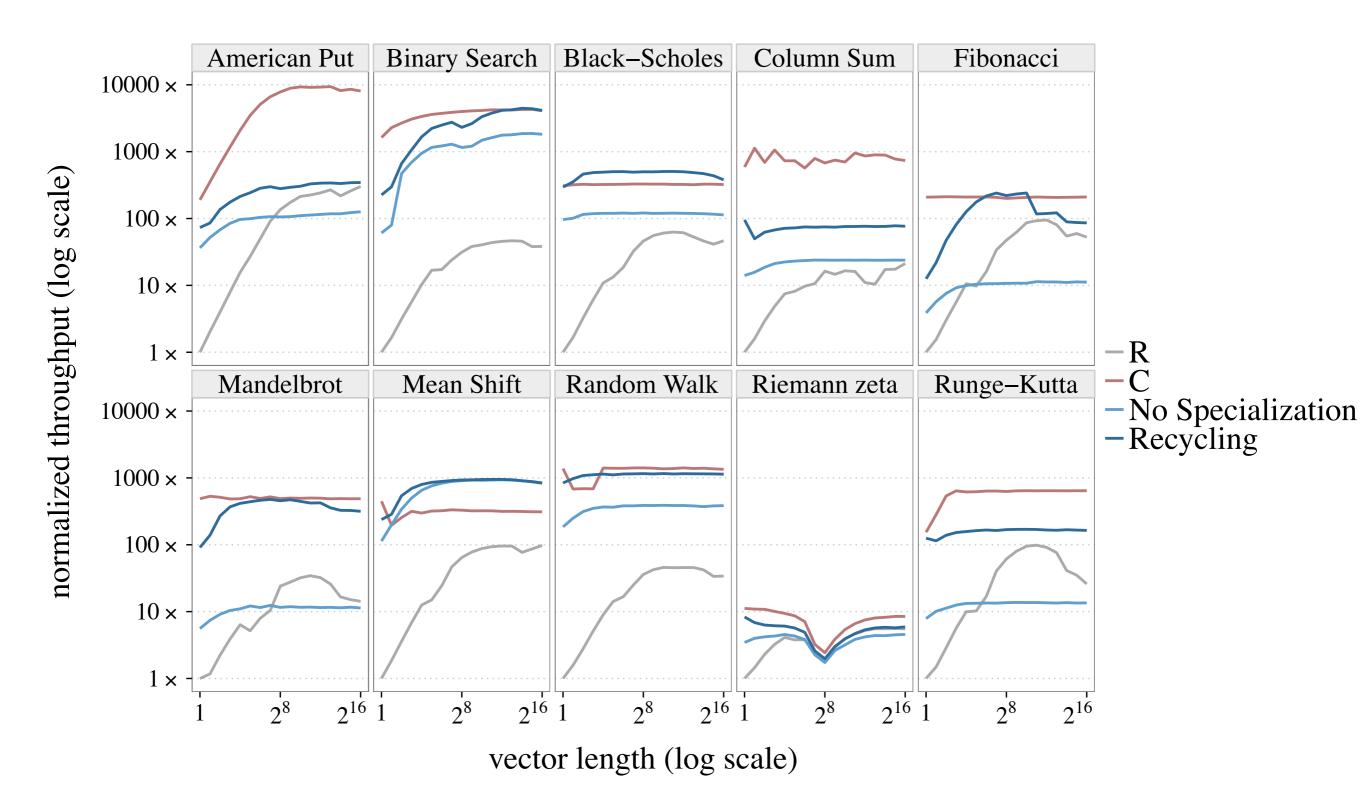


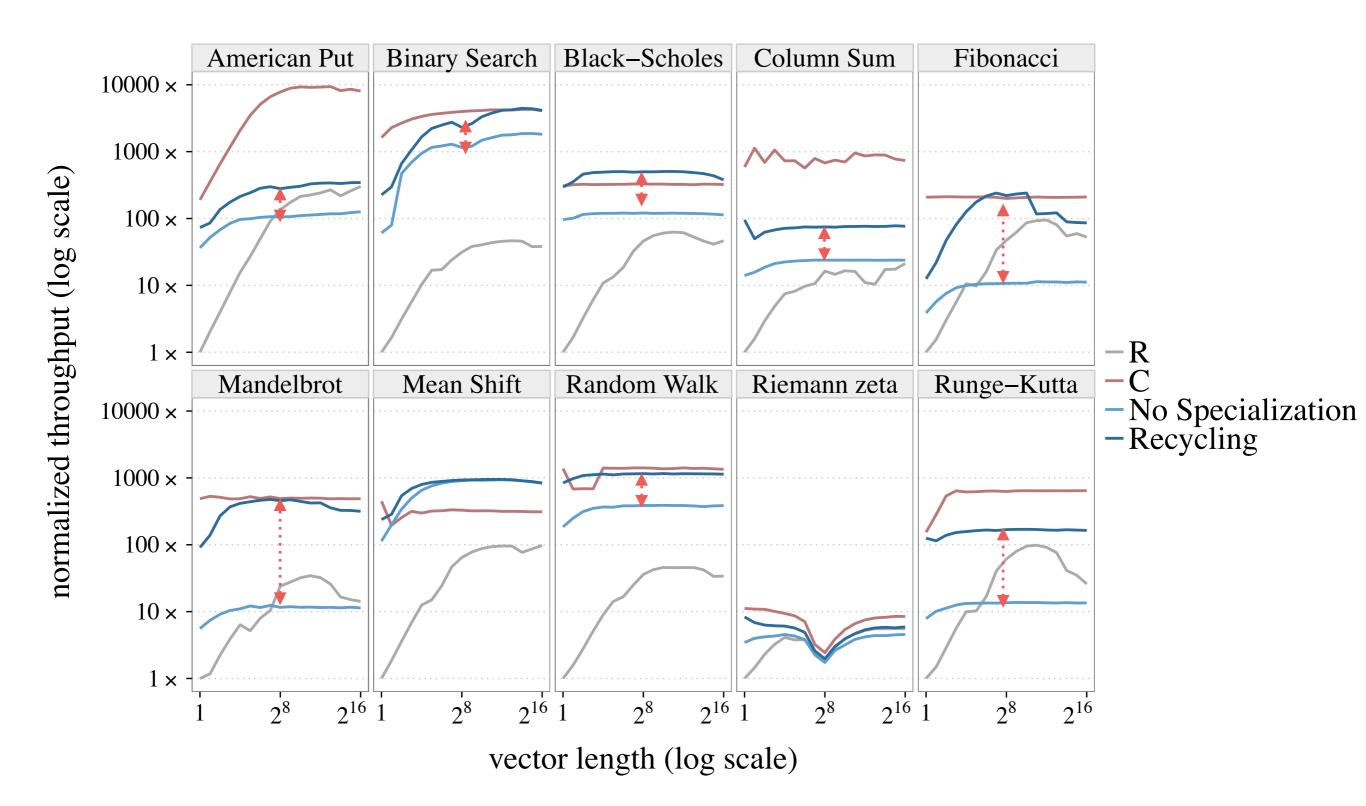


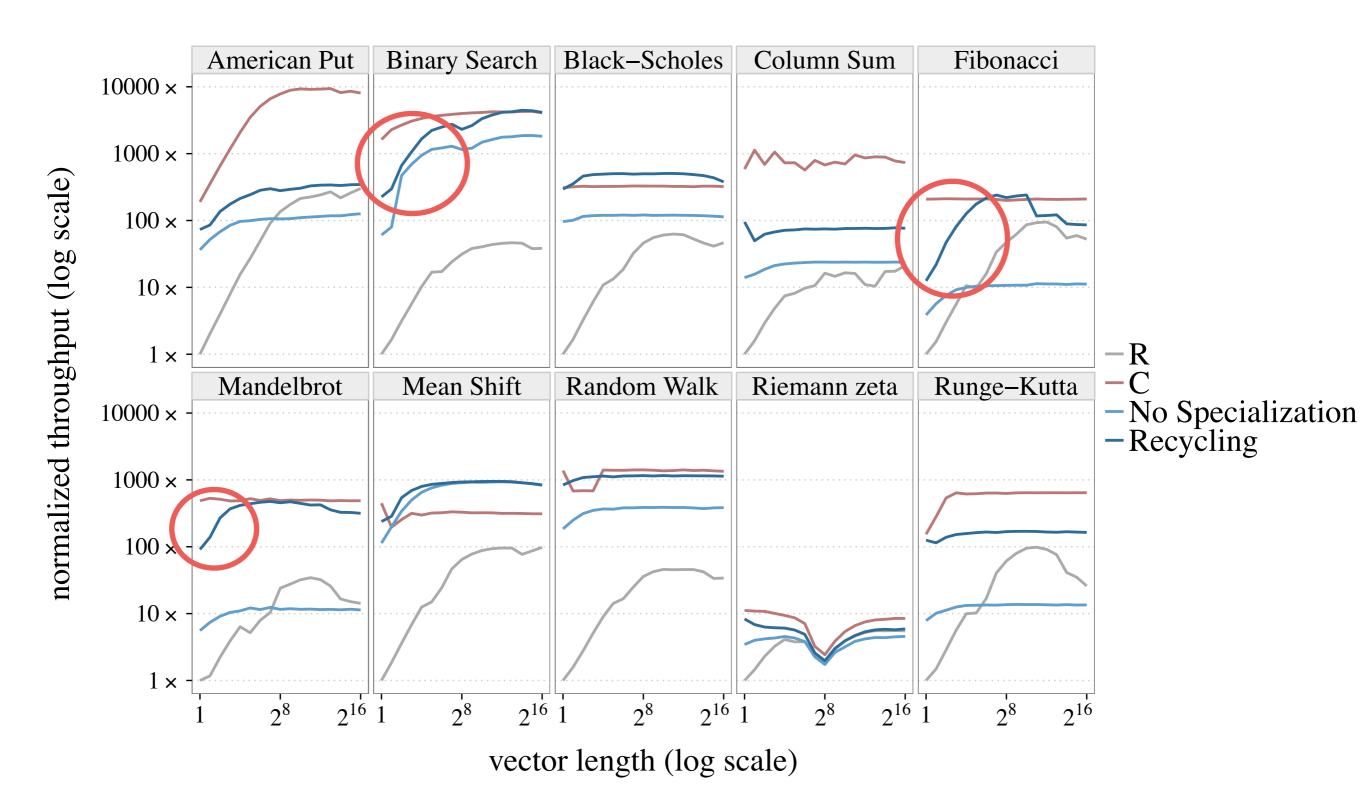


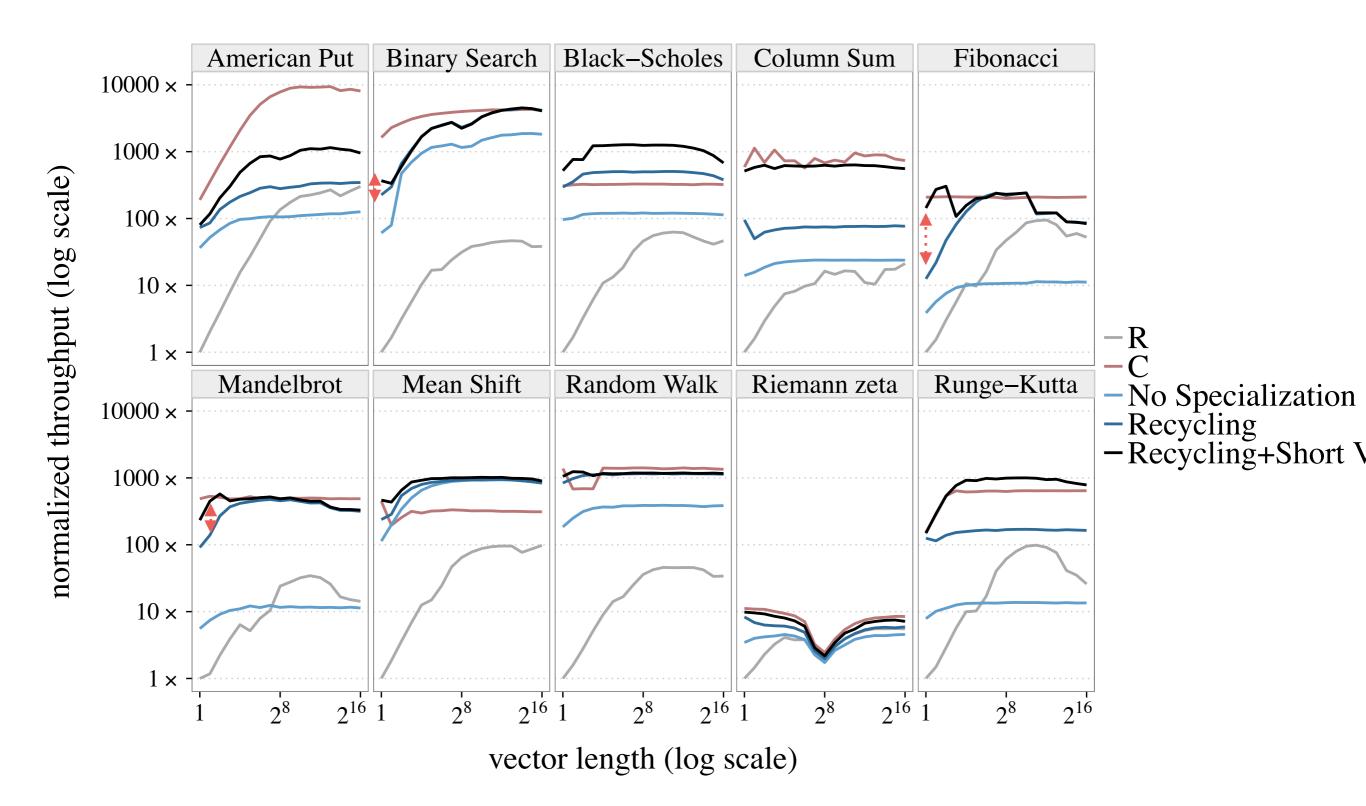


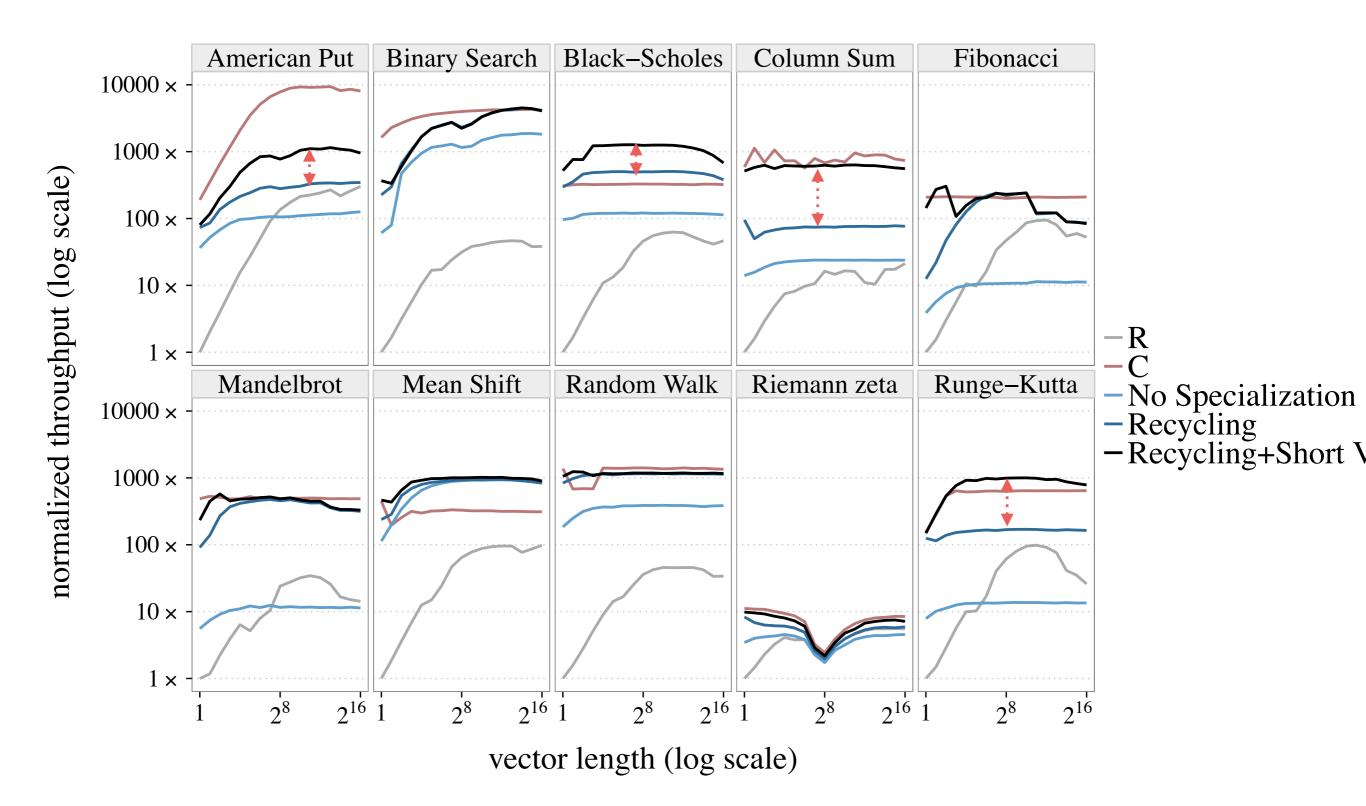












How far did we get?

How far did we get?

- More stable performance across a wide-range of vector sizes, but not yet as good as hand-written C on some workloads.
- Performance on-par with C for some workloads, but not all.
 - Faster when we can make better use of SSE
 - Slower when there is scalar control flow

Open issues

Incomplete story

- Instrumentation showed our heuristics will not increase compilation overhead "much"
- Evaluation showed specialization with our heuristics increases performance across a wide range of vector lengths
- Missing: Real-world workloads running in Riposte to demonstrate that our approach works in the wild.

Long vs. short

- Unify long/short vector strategies in a single JIT?
 - Deferred vs hot loop execution?
 - Medium length vectors?
 - What can we learn from nested parallel languages?

LLVM

Stage	Time (s)	Percent
Early optimizations	0.003	3.2%
Length specialization	≤ 0.001	$\sim 0.5\%$
Vector optimizations	≤ 0.001	$\sim 0.5\%$
Generating LLVM instructions	0.002	2.2%
LLVM optimization passes	0.012	13.0%
LLVM code emission	0.074	80.4%

Table 1. Compilation time for BLACK-SCHOLES.

Current State of Riposte

Towards Completeness

- Much harder than I originally thought...and I was originally pessimistic
- 700 Primitive & Internal functions
 - many not documented at all...what does .addCondHands do?
 - Riposte implements most of these in R (including S3 dispatch)
 - Riposte has ~80 primitive functions, most much lower level than R's
- FFI
 - R header files (Rinternals.h, argh!) expose way too much of the internal implementation details

Vector FFIs?

```
.Map(ff_name, ...)
Runtime handles recycling arguments and calls ff_name to get each result.
```

```
.Reduce(ff_name, base_case, ...)
Runtime handles iteration
```

Vector FFIs?

- Runtime can do vector optimizations such as fusion
- Runtime can parallelize FFI execution
- Many built-in functions could be moved to libraries (e.g. transcendental functions)

Thanks

