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Riposte

* Bytecode interpreter and tracing JIT compiler for R
* Focused on
* executing vector code well

e using parallel hardware

* Written from scratch
(how fast can it be” don’t reason from incremental changes!)

o http://github.com/jtalbot/riposte

* http://purl.stanford.edu/ym439jk6562



http://github.com/jtalbot/riposte
http://purl.stanford.edu/ym439jk6562

What makes R'S
vectors hard?



Ihey are
semantically poor



How is it used?

dynamically-allocated array”
tuple”?

scalar?

dictionary?

tree?



What does it imply?

(If I know that a variable is a vector of length 4,
what else can | figure out?)

e Usually very little!

* Recycling rule means that almost all vectors
conform to each other



Riposte

* Project #1. Execute long vectors well
(large dynamically-allocated arrays)

* Deferred evaluation approach

* Operator fusion/merging to eliminate memory
bottlenecks

* Parallelize execution of fused operators

e But...



Riposte

* Project #2: Execute short vectors well
(scalars, tuples, short dynamically-allocated arrays)

e Hot-loop just-in-time (JIT) compilation
e (Partial) length specialization

* Optimize based on lengths



Hot-loop JI'T

 Hypothesis: if code has scalars or short vectors,
computation time must be dominated by loops.

* |nterpreter watches for expensive loops.

 When it finds one, compile machine code for loop,

make assumptions that lead to optimizations
(specialization)

 (Guard against changes to assumptions



Hot-loop JI'T

e Specialization

* Assumptions should lead to big optimization wins
(frequency * performance improvement)

* Assumptions should be predictable
(to amortize overhead)



Specialization

* [ype specialization explored in other dynamic
languages (Javascript, etc.)

* [ength specialization Is interesting in R
* Eliminate recycling overhead
e Store vector in register/stack instead of heap

* [ ength-based optimizations (fusion, etc.)



Which length specializations

make sense”?
(big win + predictable)



|_ength specializations”

e |nstrumented GNU R

 Recorded operand lengths of binary arithmetic
operators

 Ran 200 vignettes, covering wide range of R
application areas



Recycling rule”
In 92% of calls, operands are the same length
= Recycling overhead is frequently unnecessary
Recycling is well predicted
e Same lengths: 99.998%

e Different lengths: 99.98%

= Specialized code has a high probability of being
reused



Predictable lengths”
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Our strategy



Partial length specialization

1. Record loop using recycle instructions +
abstract lengths

2. Eliminate some recycle instructions +
iIntroduce guards

e Heuristic: Only specialize if the input lengths were equal while tracing
and if both are loop carried or if both aren't

3. Specialize some abstract lengths to concrete lengths
+ Introduce guards

e Heuristic: Only specialize vectors with non-loop carried lengths <= 4



Length-based optimizations

* Operator fusion
(can’t have intervening recycle operations)

* Vector “register allocation”

e SSE registers
(needs concrete lengths)

* Shared stack/heap locations / eliminate copies
(needs same lengths)



Evaluation



Evaluation

-+ Can we run vectorized code efficiently across a
wide range of vector lengths?

* 10 workloads, written in idiomatic R vectorized
style so we can vary length of input vectors

 Compare to GNU R bytecode interpreter &
C (clang 3.1 -O3 + autovectorization)

 Measure |ust execution time
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normalized throughput (log scale)
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normalized throughput (log scale)
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How far did we get”?



How far did we get”?

* More stable performance across a wide-range of
vector sizes, but not yet as good as hand-written C
on some workloads.

* Performance on-par with C for some workloads, but
not all.

e Faster when we can make better use of SSE

e Slower when there is scalar control flow



Open ISSUEeS



iIncomplete story

e |nstrumentation showed our heuristics will not
iIncrease compilation overhead "much”

* Evaluation showed specialization with our
neuristics increases performance across a wide

range of vector lengths

* Missing: Real-world workloads running in Riposte
to demonstrate that our approach works in the wild.



L. oNng vs. short

* Unify long/short vector strategies in a single JIT?
» Detferred vs hot loop execution”
 Medium length vectors?

 What can we learn from nested parallel
languages”



LLVM

Stage Time (s)
Early optimizations 0.003
Length specialization < 0.001
Vector optimizations < 0.001
Generating LLVM i1nstructions 0.002
LLVM optimization passes 0.012
LLVM code emission 0.074

Percent
3.2%

~ 0.9%
~ 0.9%
2.2%
13.0%
80.4%

Table 1. Compilation time for BLACK-SCHOLES.






Current State of
Riposte



Towards Completeness

 Much harder than | originally thought...and | was originally pessimistic
e 700 Primitive & Internal functions

e many not documented at all...what does .addCondHands do”?

* Riposte implements most of these in R (including S3 dispatch)
* Riposte has ~80 primitive functions, most much lower level than R’s

+ FFI

* R header files (Rinternals.h, argh!) expose way too much of the
internal iImplementation details



Vector FFIs?

.Map(ff name, ...)

Runtime handles recycling arguments and calls ff_name to
get each result.

.Reduce(ff name, base case, ...)
Runtime handles iteration



Vector FFIs?

 Runtime can do vector optimizations such as fusion
 Runtime can parallelize FFl execution

 Many built-in functions could be moved to libraries
(e.g. transcendental functions)
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