Just-in-time Length Specialization of
Dynamic Vector Code

Justin Talbot Zachary DeVito Pat Hanrahan

Tableau Research Stanford University

(ARRAY 2014)

Tableau

lableau + R

Pages

Filters

Marks

All xt

SUM(Petal length) x*
»* Automatic -

& a8 5

Color Sze Label
Detail | Tooltip| | Shape

& [Clusters Al

SUM(Petal width)

AGG(Clusters)
B setosa
1 versicolor

B ! virginica

* Columns

Rows

Sepal length

Sepal width

Petal length
Sepal length

o

3 4
Petal length

0.5

o 8° O@@ o
83
%58%@ O
a0
o)
o)
og R0’
8,83 ooooooooooO
s
1.0 1.5 2.0 25
Petal wadth

Riposte

* Bytecode interpreter and tracing JIT compiler for R
* Focused on
* executing vector code well

e using parallel hardware

* Written from scratch
(how fast can it be” don’t reason from incremental changes!)

o http://github.com/jtalbot/riposte

* http://purl.stanford.edu/ym439jk6562

http://github.com/jtalbot/riposte
http://purl.stanford.edu/ym439jk6562

What makes R'S
vectors hard?

Ihey are
semantically poor

How is it used?

dynamically-allocated array”
tuple”?

scalar?

dictionary?

tree?

What does it imply?

(If I know that a variable is a vector of length 4,
what else can | figure out?)

e Usually very little!

* Recycling rule means that almost all vectors
conform to each other

Riposte

* Project #1. Execute long vectors well
(large dynamically-allocated arrays)

* Deferred evaluation approach

* Operator fusion/merging to eliminate memory
bottlenecks

* Parallelize execution of fused operators

e But...

Riposte

* Project #2: Execute short vectors well
(scalars, tuples, short dynamically-allocated arrays)

e Hot-loop just-in-time (JIT) compilation
e (Partial) length specialization

* Optimize based on lengths

Hot-loop JI'T

 Hypothesis: if code has scalars or short vectors,
computation time must be dominated by loops.

* |nterpreter watches for expensive loops.

 When it finds one, compile machine code for loop,

make assumptions that lead to optimizations
(specialization)

 (Guard against changes to assumptions

Hot-loop JI'T

e Specialization

* Assumptions should lead to big optimization wins
(frequency * performance improvement)

* Assumptions should be predictable
(to amortize overhead)

Specialization

* [ype specialization explored in other dynamic
languages (Javascript, etc.)

* [ength specialization Is interesting in R
* Eliminate recycling overhead
e Store vector in register/stack instead of heap

* [ength-based optimizations (fusion, etc.)

Which length specializations

make sense”?
(big win + predictable)

|_ength specializations”

e |nstrumented GNU R

 Recorded operand lengths of binary arithmetic
operators

 Ran 200 vignettes, covering wide range of R
application areas

Recycling rule”
In 92% of calls, operands are the same length
= Recycling overhead is frequently unnecessary
Recycling is well predicted
e Same lengths: 99.998%

e Different lengths: 99.98%

= Specialized code has a high probability of being
reused

Predictable lengths”

average prediction rate

Predictable lengths”

100% -

75% -

50% -

25% -

0% -

/\/

I 27,2 21,2

vector length (binned on log, scale)

average prediction rate

Predictable lengths”

100% -

75% -

50% -

25% -

§<8

0% -

0o 1 [27,2°) [21,2'%)

vector length (binned on log, scale)

Our strategy

Partial length specialization

1. Record loop using recycle instructions +
abstract lengths

2. Eliminate some recycle instructions +
iIntroduce guards

e Heuristic: Only specialize if the input lengths were equal while tracing
and if both are loop carried or if both aren't

3. Specialize some abstract lengths to concrete lengths
+ Introduce guards

e Heuristic: Only specialize vectors with non-loop carried lengths <= 4

Length-based optimizations

* Operator fusion
(can’t have intervening recycle operations)

* Vector “register allocation”

e SSE registers
(needs concrete lengths)

* Shared stack/heap locations / eliminate copies
(needs same lengths)

Evaluation

Evaluation

-+ Can we run vectorized code efficiently across a
wide range of vector lengths?

* 10 workloads, written in idiomatic R vectorized
style so we can vary length of input vectors

 Compare to GNU R bytecode interpreter &
C (clang 3.1 -O3 + autovectorization)

 Measure |ust execution time

normalized throughput (log scale)

10000 x

1000 x

100 x

10 x

1 x

10000 x

1000 x

100 x

10 x

1 x

American Put

Binary Search Black—Scholes

Column Sum

Fibonacci

Mandelbrot

Mean Shift

Random Walk

Riemann zeta

Runge—Kutta

28 216 1 2iS 216 1

vector length (log scale)

normalized throughput (log scale)

10000 x

1000 x

100 x

10 x

1 x

10000 x

1000 x

100 x

10 x

1 x

American Put

Binary Search Black—Scholes Column Sum

Fibonacci

Mandelbrot

Mean Shift Random Walk Riemann zeta

Runge—Kutta

216 1 QrS 216 1 28 216 1

vector length (log scale)

normalized throughput (log scale)

10000 x

1000 x

100 x

10 x

1 x

10000 x

1000 x

100 x

10 x

1 x

American Put

—

Binary Search Black—Scholes Column Sum

W—\

Fibonacci

Mandelbrot

Mean Shift

Random Walk Riemann zeta

\/

Runge—Kutta

58

216 1 28 216 1

vector length (log scale)

normalized throughput (log scale)

10000 x

1000 x |

100 x |-

10 x |-

1x

American Put

Binary Search Black—Scholes

Column Sum

/\/\M/‘—-\

Fibonacci

10000 x -

1000 x -

100 x -

10 x -

1 x -

vector length (log scale)

Mean Shift Random Walk Riemann zeta Runge—Kutta
- _/

\~ /
e T TS N S S e ST S S

normalized throughput (log scale)

10000 x -

1000 x -

100 x -

10 x -

1 x -

American Put

Binary Search Black—Scholes

—

Column Sum

/\/\M/‘—-\

Fibonacci

10000 x -

1000 x -

100 x -

10 x -

1 x -

Mandelbrot

‘D

Mean Shift

<

Random Walk

\/

Riemann zeta

Runge—Kutta

216 1 2IS

i

vector length (log scale)

normalized throughput (log scale)

American Put

Binary Search Black—Scholes

Column Sum

Fibonacci

10000 x -
~
1000 x - /\/\/w_\
100 x - o ad —
- /\,\
10 x - /\ /V\// 7
I x -
Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta
10000 x -
1000 x - —|\/
>[— /
100 x - /\
. M
N s T B N S e S R

vector length (log scale)

—R
—C
—No Specialization

normalized throughput (log scale)

10000 x -

1000 x -

100 x -

10 x -

1x -

American Put

Binary Search Black—Scholes

)

Column Sum

/\/\/\,./‘—-\

Fibonacci

10000 x -

1000 x -

100 x -

10 x -

1 x -

Mandelbrot

‘P

Mean Shift

|

\R

Random Walk

Riemann zeta

Runge—Kutta

~

—_— —

216 1

58

vector length (log scale)

—R
—C
—No Specialization

normalized throughput (log scale)

American Put = Binary Search Black—Scholes Column Sum Fibonacci
10000 x -
1000 x - W\
f NN
100 - //f_: — e /Aﬁ\
10 -
X 7 /
I x -
Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta
10000 x -
1000 x - N
100 x - T
I x -
i QiS 21I6 1 QiS 216 i 2i8 216 i 2i8 21I6 i 2i8 21I6

vector length (log scale)

R
—C
—No Specialization
—Recycling

normalized throughput (log scale)

American Put

Binary Search Black—Scholes

Column Sum

Fibonacci

10000 x -
1000 x - /\/w—\
S L
/1/_ v A
= Vs
~ . :
10 x - /\ /V\// 7 \ 4
I x -
Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta
10000 x -
1000 x - — N7

100 x -

10 x -

1 x -

98

vector length (log scale)

—R

—C

—No Specialization
—Recycling

normalized throughput (log scale)

American Put Binary Search Black—Scholes Column Sum Fibonacci
10000 x -
1000 x - /\/w—\
/\/ “— —
100 x - / — - \
~
10 x -
I x -
Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta
10000 x -
1000 x - N
f e /
100 ~ /\
e =~=7
I x -
N S S S S

vector length (log scale)

—R

—C

—No Specialization
—Recycling

normalized throughput (log scale)

American Put Binary Search Black—Scholes Column Sum Fibonacci
10000 x -
1000 x - ~ TN AN
%: # e —
100 X 7 / - \f A
10 - Y
X 7 /
I x 1
Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta
10000 x -
1000 x - —F = . -
EA? ~— % — /
100 x - T
10x 4 _—7 v —
1 x -
e H TR S S B S B !

vector length (log scale)

R
—C
—No Specialization
—Recycling
—Recycling+Short \

normalized throughput (log scale)

American Put Binary Search Black—Scholes Column Sum Fibonacci

10000 x -
1000 x - : /_/——T—\ AL
%ﬁ L ¥ — A
100 x - / — - \f A 4
~
10 x - /
I x 1 _lé
10000 - Mandelbrot Mean Shift Random Walk Riemann zeta Runge—Kutta __ No Sp ec ialization
—Recycling
—Recycling+Short \
1000 x - — = -
i ; % e / v
100 x - [—
10 x - / 7 § —
1 x -
1 2 5l6 | 2 5l6 |) 5l6 |) 5l6 | % 5l6

vector length (log scale)

How far did we get”?

How far did we get”?

* More stable performance across a wide-range of
vector sizes, but not yet as good as hand-written C
on some workloads.

* Performance on-par with C for some workloads, but
not all.

e Faster when we can make better use of SSE

e Slower when there is scalar control flow

Open ISSUEeS

iIncomplete story

e |nstrumentation showed our heuristics will not
iIncrease compilation overhead "much”

* Evaluation showed specialization with our
neuristics increases performance across a wide

range of vector lengths

* Missing: Real-world workloads running in Riposte
to demonstrate that our approach works in the wild.

L. oNng vs. short

* Unify long/short vector strategies in a single JIT?
» Detferred vs hot loop execution”
 Medium length vectors?

 What can we learn from nested parallel
languages”

LLVM

Stage Time (s)
Early optimizations 0.003
Length specialization < 0.001
Vector optimizations < 0.001
Generating LLVM i1nstructions 0.002
LLVM optimization passes 0.012
LLVM code emission 0.074

Percent
3.2%

~ 0.9%
~ 0.9%
2.2%
13.0%
80.4%

Table 1. Compilation time for BLACK-SCHOLES.

Current State of
Riposte

Towards Completeness

 Much harder than | originally thought...and | was originally pessimistic
e 700 Primitive & Internal functions

e many not documented at all...what does .addCondHands do”?

* Riposte implements most of these in R (including S3 dispatch)
* Riposte has ~80 primitive functions, most much lower level than R’s

+ FFI

* R header files (Rinternals.h, argh!) expose way too much of the
internal iImplementation details

Vector FFIs?

.Map(ff name, ...)

Runtime handles recycling arguments and calls ff_name to
get each result.

.Reduce(ff name, base case, ...)
Runtime handles iteration

Vector FFIs?

 Runtime can do vector optimizations such as fusion
 Runtime can parallelize FFl execution

 Many built-in functions could be moved to libraries
(e.g. transcendental functions)

Thanks

+1+
witableau

SSSSSSSS

