

UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

DSC2014

Optimizing R VM: Interpreter-level Specialization and Vectorization

Haichuan Wang¹, Peng Wu², David Padua¹

¹ University of Illinois at Urbana-Champaign

² Huawei America Lab

Our Taxonomy - Different R Programming Styles

Type I: Looping Over Data

```
b <- rep(0, 500*500);
dim(b) <- c(500, 500)
for (j in 1:500) {
   for (k in 1:500) {
     jk<-j - k;
     b[k,j] <- abs(jk) + 1
   }
}</pre>
(1) ATT bench: creation of Toeplitz matrix
```

Type II: Vector Programming

```
males_over_40 <- function(age, gender) {
   age >= 40 & gender == 1
}

(2) Riposte bench: a and g are large vectors
```

Type III: Native Library Glue

```
a <- rnorm(2000000);
b <- fft(a)

(3) ATT bench: FFT over 2 Million random values</pre>
```


Our Project - ORBIT

Approaches

R Benchmark Repository + Performance evaluation and analysis (https://github.com/rbenchmark/benchmarks)

Pure Interpreter

Portable, Simple. Interesting research problem

Compiler plus Runtime

Simplify the compiler analysis. Have to use runtime info due to the dynamics

Specialization

Source

a + 1

GETVAR_OP, 1 LDCONST_OP, 2 ADD_OP Byte-code

Operation Side

```
int typex = ...
int typey = ...
if(typex == REALSXP) {
  if(typey == REALSXP)
    ...
  else if (...)
    ...
}
else if (typex == INTSXP && ... )
  if(typey == REALSXP)
    ...
  else if (...)
    ...
}
Arith2(...) //Handle complex case
```

Specialization

REALADD_OP

REALVECADD OP

ADD_OP

INTADD_OP

INTVECADD OP

SCALADD_OP

VECADD OP

Data Object Side

More Specialization are Required in the Object Side

- Generic Object Representation
 - Two basic meta object types for all

Node object

Vector object

All runtime and user type objects are expressed with the two types

Generic Object Representation – Two Examples

Local Frames (linked list)

r <- 1000

Matrix (vector + linked list)

matrix(1:12, 3, 4)

Data Object Specialization – Implemented in ORBIT

Approaches

- Use raw (unboxed) objects to replace generic objects
- Mixed Stack to store boxed and unboxed objects
- With a type stack to track unboxed objects in the stack
- Unbox value cache: a software cache for faster local frame object access

Results

```
b <- rep(0, 500*500);
dim(b) <- c(500, 500)
for (j in 1:500) {
  for (k in 1:500) {
    jk<-j - k;
    b[k,j] <- abs(jk) + 1
  }
}</pre>
(1) ATT bench: creation of Toeplitz matrix
```

GNU R VM Memory System Metrics

	Byte-code Interpreter	ORBIT
GC Time (ms)	32.0	14.8
Node objs allocated	3,753,112	750,104
Vector scalar objs allocated	3,004,534	2,251,526
Vector non-scalar allocated	3,032	23

Performance of ORBIT – Shootout Benchmark

Percentage of Memory Allocation Reduced

Benchmark	SEXPREC	VECTOR scalar	VECTOR non-scalar
nbody	85.47	% 86.82%	69.02%
fannkuch-redux	99.99	% 99.30%	71.98%
spectral-norm	43.05	% 91.46%	99.46%
mandelbrot	99.95	% 99.99%	99.99%
pidigits	96.89	% 98.37%	95.13%
Binary-trees	36.32	% 67.14%	0.00%
Mean	76.95	% 90.51%	72.60%

Data Object Specialization – Ideas

Approach

- Introduce new data representation besides the nodes and vector
- Use them to express runtime objects, and some R data types

Some candidates

Object	Current Representation	Possible Specialization
Local frames	Linked list, search by name	Stack, search by index, and a Map for the dynamic part
Argument list	Linked list	Slots in the stack
Hashmap	Constructed using Node object and Vector objects	A dedicated HashMap data structure
Attributes of a object	Linked list	using a hashmap,
Matrix, high dim arrays	Vector plus attributes lists	Dedicated objects based on Vector

Vectorization Background

- Observations: the performance of type II code is good
 - Two shootout benchmark examples
 - R: Using Type II coding style
 - C/Python: from shootout website
 - R is within 10x slowdown to C
 - R is faster, or much faster than Python

It's relatively hard to write type II code

Type II with standard input size

ORBIT's optimization

Type I (Loop)

Vectorization

Type II (Vector)

Vectorize one specific category application

apply Family of Operations

A family of built-in functions in R

Name	Description
apply	Apply Functions Over Array Margins
by	Apply a Function to a Data Frame Split by Factors
eapply	Apply a Function Over Values in an Environment
lapply	Apply a Function over a List or Vector
mapply	Apply a Function to Multiple List or Vector Arguments
rapply	Recursively Apply a Function to a List
tapply	Apply a Function Over a Ragged Array

- Their behaviors Similar to the *Map* function
 - Use *lapply* as the example
 - if $L = \{s_1, s_2, ..., s_n\}$, f is a function $r \leftarrow f(s)$, then
 - $-\{f(s_1), f(s_2), \dots, f(s_n)\} \leftarrow lapply(L, f)$

Performance Issues of *apply* Operations

Interpreted as Type I style – Loop over data

pseudo code of *lapply*

```
lapply(L, f) {
    len <- length(L)
    Lout <- alloc_veclist(len)
    for(i in 1:len) {
        item <- L[[i]]
        Lout[[i]] <- f(item)
    }
    return(Lout)
}</pre>
Implemented in C code to
    improve the performance
```

Problems remaining

- Interpretation overhead
 - Pick element one by one, and invoke f() many times.
- Data representation overhead
 - L and Lout are represented as R list objects. Composed by R Node objects

A Motivating Example

apply style V.S. Vector programming

```
# a<- rnorm(100000)
b <- lapply(a, function(x){x+1})
time = 2.013 s
```

```
# a<- rnorm(1000000)
b <- a + 1
```

time = 0.016 s

Vectorization of apply based applications?

Linear Regression

```
grad.func <- function(yx) {
    y <- yx[1]
    x <- c(1, yx[2])
    error <- sum(x *theta) - y
    delta <- error * x
}</pre>
```


Vector version?

Vectorization – High Level Idea

Transform Type I interpretation to Type II/Type III execution

- L': The corresponding vector representation of L
- lacksquare $ar{f}$: The vector version of f , that can take a vector object as input

Some Preliminary Results of Vectorization

■ Up to 27x, in average 9x speedup

Name	Original (s)	Vectorized (s)	Speedup	
LR	25.227	1.576	16.01	
LR-n	35.712	4.241	8.42	
K-Means	15.646	2.776	5.63	No data reuse,
K-Means-n	22.387	3.369	6.64	the overhead of
Pi	23.134	11.320	2.04	data reshape cannot be
NN	24.690	0.893	27.65	amortized
kNN	26.477	1.687	15.69	
Geo Mean			8.91	

 This Vectorization is orthogonal to the current R parallel frameworks

Conclusion

Our Work – ORBIT VM

- Extension to GNU R, Pure interpreter based JIT Engine
- Specialization
 - Operation specialization + Object representation specialization
 - Some results were published in CGO 2014
- Vectorization
 - Focusing on applications based on apply class operations
 - Transform Type I execution into Type II and Type III

The benchmarks

- https://github.com/rbenchmark/benchmarks
- Benchmark collections
- Benchmarking tools
 - A driver + several harness to control different research R VMs

Thank You!

Contact Info:

Haichuan Wang (hwang154@illinois.edu) Peng Wu (pengwu@acm.org) David Padua (padua@illinois.edu)

Backup

Related Work

ORBIT Project Overview

- Focus on Type I code's performance improvement
 - Specialization: operation and data object representation
 - Vectorization: translate Type I code into Type II code
- Pure Interpreter Approach
 - Portable, simple, and easy to be compatible with GNU R
- Compiler plus runtime
 - Use runtime information to guide compiler optimization

An Example of ORBIT Specialization

Source

foo <- function(a) {
 b <- a + 1
}

Byte-code Symbol table

ldx	Value
1	"a"
2	1
3	a+1
4	b

Generic Domain

ORBIT

Specialized Domain

Specialized byte-code

PC	STMTS
1	GETREALUNBOX, 1
3	LDCONSTREAL, 2
5	REALADD
6	SETUNBOXVAR, 4

Specialized data representation

VM Stack

real scalar real scalar SEXPREC ptr

ORBIT Approach Highlight

Type profiling + Fast type inference

- Profiling once -> trigger optimization
- Simple type system, use profiling type to help typing

Specialized data representation

- Use raw (unboxed) objects to replace generic objects
- Mixed Stack to store boxed and unboxed objects
- With a type stack to track unboxed objects in the stack
- Unbox value cache: a software cache for faster local frame object access

Specialized byte-code and runtime function routines

- Type specialized instructions for common operations
- Simplify calling conventions according to R's semantics

Guards to handle incorrect type speculation

- Type change → Guard failure → Restore the generic code and object
- Combine the new type with the original profiling type → Retry optimization later