UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

D5C2014 Optimizing R VM: Interpreter-level
Specialization and Vectorization

Haichuan Wang?!, Peng Wu?, David Padua?

1 University of lllinois at Urbana-Champaign 2 Huawei America Lab
: I ,

illinois.edu

Optimizing R VM: Interpreter-level Specialization and Vectorization

1

Our Taxonomy - Different R Programming Styles

Type |: Looping Over Data

Type ll: Vector Programming

Type lll: Native Library Glue

b <- rep(0, 500*500);
dim(b) <- c(500, 500)
for (j in 1:500) {
for (k in 1:500) {
jk<-J - k;
b[k,j] <- abs(jk) + 1
}
}

(1) ATT bench: creation of Toeplitz matrix

males over 40 <- function(age, gender) {
age >= 40 & gender ==
}

(2) Riposte bench: a and g are large vectors

a <- rnorm(2000000);
b <- fft(a)

(3) ATT bench: FFT over 2 Million random values

Optimizing R VM: Interpreter-level Specialization and Vectorization ﬂ

Our Project - ORBIT
= Approaches

ORBIT
Specialization

VM (CGO’14)

Type l Vectorization of Type ll Type lll
(Loop) apply family operations (Vector) (Library)

R Benchmark Repository + Performance evaluation and analysis
(https://github.com/rbenchmark/benchmarks)

= Pure Interpreter
— Portable, Simple. Interesting research problem
= Compiler plus Runtime

— Simplify the compiler analysis. Have to use runtime info due to the
dynamics

Optimizing R VM: Interpreter-level Specialization and Vectorization

Specialization

Source
a +1
Operation Side
int typex =
int typey = ...
if(typex == REALSXP) {
if(typey == REALSXP)
else if (...)
}
else if (typex == INTSXP && ...)

if(typey == REALSXP)
else if (...)

}
Arith2(...) //Handle complex case

@Specialization

GETVAR OP, 1
LDCONST OP, 2

ADD_OP

REALADD OP | REALVECADD_OP

ADD_OP

INTADD_OP INTVECADD_OP

SCALADD_OP | VECADD_oOP

1y

Byte-code

Data Object Side

Top

1

VM Stack

2| VECTOR
SEXPREC ptr

SEXPREC ptr AN d

SEXPREC ptr VECTOR

@ Specialization

Top
VM Stack

unboxed val

unboxed val

SEXPREC ptr

Optimizing R VM: Interpreter-level Specialization and Vectorization

More Specialization are Required in the Object Side

= Generic Object Representation

— Two basic meta object types for all

SEXPREC . VECTOR _SEXPREC
Node object Vector object
sxpinfo_struct sxpinfo sxpinfo_struct sxpinfo
SEXPREC* attrib SEXPREC* attrib
SEXPREC* pre_node SEXPREC* pre_node
SEXPREC* next_node SEXPREC* next_node
SEXPREC* CAR R_len_t length
SEXPREC* CDR R len t truelength
SEXPREC* TAG Vector raw data

— All runtime and user type objects are expressed with the two types

Optimizing R VM: Interpreter-level Specialization and Vectorization

Generic Object Representation — Two Examples

" Local Frames (linked list) r <- 1000

Parent frame |Node

Current frame | Node *| Node Node | —>

-

Hashmap r’ N 1000 l\

cache Vector Vector
(string) (double)

= Matrix (vector + linked list) |matrix(1:12, 3, a)

1:12

Vector
(double) attrib

Node

‘dim’ ['vector Vector 34
(string) (integgr)

v

Optimizing R VM: Interpreter-level Specialization and Vectorization ﬂ

Data Object Specialization — Implemented in ORBIT

= Approaches
— Use raw (unboxed) objects to replace generic objects
— Mixed Stack to store boxed and unboxed objects
— With a type stack to track unboxed objects in the stack
— Unbox value cache: a software cache for faster local frame object access

= Results

GNU R VM Memory System Metrics

b <- rep(9, 500*500);

dim(b) <- c(500, 500) Byte-code
e (4w 15EEE) | Interpreter Sl
for (k in 1:500) {
jk<-j - k; GC Time (ms) 32.0 14.8
) blk,J] <- abs(jk) + 1 Node objs allocated 3,753,112 750,104
} Vector scalar objs allocated 3,004,534 2,251,526
Vector non-scalar allocated 3,032 23

(1) ATT bench: creation of Toeplitz matrix

Optimizing R VM: Interpreter-level Specialization and Vectorization

Performance of ORBIT — Shootout Benchmark

8.0

6.0

4.0

2.0

0.0

4.29

Speedup over byte-code interpreter

2.24

5.05

6.28

1

Dominated by user
level call overhead.
Not handled by ORBIT

1.37

nbody

fannkuch-redux spectral-norm mandelbrot

pidigits

Percentage of Memory Allocation Reduced

binary-trees

Geo Mean

SEXPREC VECTOR scalar VECTOR non-scalar

nbody
fannkuch-redux
spectral-norm
mandelbrot
pidigits
Binary-trees

Mean

85.47% 86.82% 69.02%
99.99% 99.30% 71.98%
43.05% 91.46% 99.46%
99.95% 99.99% 99.99%
96.89% 98.37% 95.13%
36.32% 67.14% 0.00%<r\:|
76.95% 90.51% 5

Optimizing R VM: Interpreter-level Specialization and Vectorization ﬂ

Data Object Specialization — Ideas

= Approach
— Introduce new data representation besides the nodes and vector
— Use them to express runtime objects, and some R data types

= Some candidates

Current Representation Possible Specialization
Local frames Linked list, search by name Stack, search by index, and a
Map for the dynamic part
Argument list Linked list Slots in the stack
Hashmap Constructed using Node object A dedicated HashMap data
and Vector objects structure
Attributes of a object Linked list using a hashmap,
Matrix, high dim arrays Vector plus attributes lists Dedicated objects based on

Vector

9

Optimizing R VM: Interpreter-level Specialization and Vectorization

Vectorization Background

1

" Observations: the performance of type Il code is good

— Two shootout benchmark examples
e R: Using Type Il coding style
* C/Python: from shootout website

— R is within 10x slowdown to C
— R is faster, or much faster than Python

= But

— It’s relatively hard to write type Il code

" ORBIT’s optimization

Type Vectorization Type i
(Loop) (Vector)

B Slowdown to C [0 Slowdown to Python

10.00

1.00 -

0.10

0.01

8.00

=

0.52

0.01

— n
/ | 89x faster

spectral-norm mandelbrot

— Vectorize one specific category application

Type Il with standard input size

10

Optimizing R VM: Interpreter-level Specialization and Vectorization

apply Family of Operations
= A family of built-in functions in R

“hame | Desigion

apply Apply Functions Over Array Margins

by Apply a Function to a Data Frame Split by Factors
eapply Apply a Function Over Values in an Environment
lapply Apply a Function over a List or Vector

mapply Apply a Function to Multiple List or Vector Arguments
rapply Recursively Apply a Function to a List
tapply Apply a Function Over a Ragged Array

" Their behaviors — Similar to the Map function

— Use lapply as the example
—ifL={s, s, .., s} fis afunction r €f{s), then
— {f(sl)/ f(sz)/ /f(sn)} éIapply(L/ f)

11

Optimizing R VM: Interpreter-level Specialization and Vectorization

Performance Issues of apply Operations

" Interpreted as Type | style — Loop over data

pseudo code of lapply

lapply(L, f) {
len <- length(L)

Lout <- alloc veclist(len) N
for(i in 1:1len) {
item <- L[[i]]
Lout[[i]] <- f(item)

Implemented in C code to
improve the performance

}

return(Lout)

" Problems remaining
— Interpretation overhead
* Pick element one by one, and invoke f() many times.

— Data representation overhead
* [and Lout are represented as R list objects. Composed by R Node objects

12

Optimizing R VM: Interpreter-level Specialization and Vectorization

A Motivating Example

= gpply style V.S. Vector programming

a<- rnorm(100000)
b <- lapply(a, function(x){x+1})

time=2.013s

a<- rnorm(1000000)
b<-a+1

time =0.016s

= Vectorization of apply based applications?

Linear Regression

grad.func <- function(yx) {
y <-yx[1]
x <- c(1, yx[2])
error <- sum(x *theta) -y
delta <- error * x

}

delta <- lapply(sample.list,
gradfunc)

- Vector version?

13

Optimizing R VM: Interpreter-level Specialization and Vectorization @
Vectorization — High Level Idea
* Transform Type | interpretation to Type Il/Type Ill execution

" Lout « lapply(L ,f) !

Data object Function
transformation transformation

lapply L' f

v vectorization
Lout’ « f(L"

= |: The corresponding vector representation of L

. f: The vector version of f , that can take a vector object as input

14

Optimizing R VM: Interpreter-level Specialization and Vectorization

Some Preliminary Results of Vectorization

= Up to 27x, in average 9x speedup

m Original (s) Vectorized (s) | Speedup

LR-n
K-Means
K-Means-n
Pi

NN

kNN

Geo Mean

= This Vectorization is orthogonal to the current R parallel

frameworks

25.227
35.712
15.646
22.387
23.134
24.690
26.477

1.576
4.241
2.776
3.369
11.320
0.893
1.687

16.01
8.42

664

No data reuse,
the overhead of
data reshape
cannot be
amortized

15

Optimizing R VM: Interpreter-level Specialization and Vectorization

Conclusion

= Our Work — ORBIT VM

— Extension to GNU R, Pure interpreter based JIT Engine
— Specialization
* Operation specialization + Object representation specialization
* Some results were published in CGO 2014

— Vectorization
* Focusing on applications based on apply class operations
* Transform Type | execution into Type Il and Type Il

=" The benchmarks
— https://github.com/rbenchmark/benchmarks
— Benchmark collections

— Benchmarking tools
e A driver + several harness to control different research R VMs

16

https://github.com/rbenchmark/benchmarks
https://github.com/rbenchmark/benchmarks
https://github.com/rbenchmark/benchmarks

Optimizing R VM: Interpreter-level Specialization and Vectorization

Thank You!

Contact Info:

Haichuan Wang (hwangl154@illinois.edu)
Peng Wu (pengwu@acm.org)
David Padua (padua@illinois.edu)

17

Optimizing R VM: Interpreter-level Specialization and Vectorization

Backup

18

Optimizing R VM: Interpreter-level Specialization and Vectorization

Related Work

Compatible w/ reference implementation

Renjin (Java)

) c
S Riposte
15 LLVM R
5 Rapydo (PyPy)
E TruffleR (Java)
O
Z FastR (Java)

R Byte-code
Q
= Interpreter
o pqgR
€
o
© ORBIT

Legend
No JIT

JIT to native code

Interpreter level JIT

Revolution R

/ Type | (Loop) Type Il (Vector)

Our work Program Types

v

Type Il (Library)

Optimizing R VM: Interpreter-level Specialization and Vectorization

ORBIT Project Overview

" Focus on Type | code’s performance improvement
— Specialization: operation and data object representation
— Vectorization: translate Type | code into Type Il code

" Pure Interpreter Approach
— Portable, simple, and easy to be compatible with GNU R

= Compiler plus runtime
— Use runtime information to guide compiler optimization

Legend

R expr or
Byte-code

—>

ORBIT Compiler

v

Specialized expr
or byte-code

Original
Component

Code Selection and Guard Failure Roll Back

New
Component

Interpreter
and
runtime
extensions

Runtime
Profiling

R Interpreter

a

i Runtime
ifeedback

20

Optimizing R VM: Interpreter-level Specialization and Vectorization E

An Example of ORBIT Specialization

VM Stack | SEXPREC ptr \‘_a VM Stack real scalar
SEXPREC ptr VECTOR , SEXPREC ptr

Source Byte-code Symbol table
Clox [Value
foo <- function(a) { 1 “a”
b<-a+1 2 1
i 3 a+1
4 b
Generic Domain Specialized Domain
/ Byte-Code \, ' Specialized byte-code
Profile n| PC| STMTS / If “@” isreal | PC | STMTS
point E> 1| GETVAR, 1 scalar | 5 1 | GETREALUNBOX, 1
3 | LDCONST, 2 . ORBIT | 3 | LDCONSTREAL, 2
5| ADD, 3 | | 5 | REALADD
7 | SETVAR, 4 i ; 6 | SETUNBOXVAR, 4
9 | INVISIBLE : !
10 | RETURN | ;
Original data 1 I : Specialized o.lata
representation jl_ VECTOR i | representation
SEXPREC ptr | : real scalar

Optimizing R VM: Interpreter-level Specialization and Vectorization I

ORBIT Approach Highlight

= Type profiling + Fast type inference
— Profiling once -> trigger optimization
— Simple type system, use profiling type to help typing

= Specialized data representation
— Use raw (unboxed) objects to replace generic objects
— Mixed Stack to store boxed and unboxed objects
— With a type stack to track unboxed objects in the stack
— Unbox value cache: a software cache for faster local frame object access

= Specialized byte-code and runtime function routines
— Type specialized instructions for common operations
— Simplify calling conventions according to R’s semantics

= Guards to handle incorrect type speculation

— Type change = Guard failure = Restore the generic code and object

— Combine the new type with the original profiling type = Retry optimization
later

22

