Automatic Non-uniform Random Variate Generation in R

Günter Tirler Josef Leydold

Abstract
Random variate generation is an important tool in statistical computing. Many programs for simulation or statistical computing (e.g. R) provide a collection of random variate generators for many standard distributions. However, as statistical modeling has become more sophisticated there is demand for larger classes of distributions. Adding generators for newly required distributions seems not to be the solution to this problem. Instead so called automatic (or black-box) methods have been developed in the last decade for sampling from fairly large classes of distributions with a single piece of code. For such algorithms data about the distributions must be given; typically the density function (or probability mass function), and (maybe) the (approximate) location of the mode. In this contribution we show how such algorithms work and suggest an interface for R as an example of a statistical library.

1 Introduction
Random variate generation is an important tool in statistical computing. Many programs for simulation or statistical computing (e.g. R) provide a collection of random variate generators for many standard distributions. There exists a vast literature on generation methods for standard distributions; see, for example, the books by Devroye (1986), Dagpunar (1988), Gentle (1998), or Knuth (1998). These books are usually the source for algorithms implemented in software. These algorithms are often especially designed for a particular distribution and tailored to the features of each probability density function. The designing goals for these methods are fast generators and/or simple code.
In the last decade so called automatic (also called universal or black-box) methods have been developed for sampling from fairly large classes of distributions with a single piece of code. For such algorithms data about the distribution must be given: typically the density function (or probability mass function), and (maybe) the (approximate) location of the mode. Obviously these universal methods need some setup step, in opposition to special generators, e.g., to the Box-Muller method (Box and Muller, 1958). Nevertheless, we always can select between a fast setup step and slow marginal generation times or (very) fast marginal generation times at the expense of a time consuming setup step. Some of the algorithms can be adjusted by a single parameter to the needs of the current situation. Although originally motivated to generate from non-standard distributions these universal methods have advantages which makes their usage attractive even for sampling from standard distributions. For univariate continuous distributions there are methods like Transformed Density Rejection (Hörmann, 1995), or algorithms based on a variant of the ratio-of-uniforms method (Leydold, 2000), or on piecewise constant hat functions (Ahrens, 1995). They have the following properties in common (see Leydold and Hörmann, 2001, for details):

- Only one piece of code, well implemented and debugged only once, is required.
- By a simple parameter it is possible to choose between fast setup with slow marginal generation time and vice versa.
- It can sample from truncated distributions.
- The algorithms can be made as close to inversion as requested.
- The marginal generation time does not depend on the density function and is faster than many of the specialized generators (even for the normal distribution).
- It can be used for variance reduction techniques.
- The quality of the generated random variates only depends on the underlying uniform random number generator.

For more details on these and many other universal methods see the forthcoming monograph by Hörmann, Leydold, and Derflinger (2003).

2 UNU.RAN

Universal methods are usually harder to implement than specialized algorithms, since there is a setup where the necessary constants for the generation steps have to be precomputed. Moreover, it might be necessary to check whether a particular method works with the given distribution. Thus we have implemented many of these automatic algorithms using ANSI C in a library called UNU.RAN (Universal Non-Uniform RANdom variate generators). Our main goal was to realize a portable, flexible and robust program, see Leydold, Hörmann, Janka, and Tirler (2002). It is
implemented using an object oriented programming paradigm. Using this library an instance of a generator object has to be created first. That object can be used to sample from the given distribution. Thus it is easy to exchange distributions in simulations. Moreover, each generator object may have its own uniform pseudo-random number generator or share one with other generator objects.

We have developed two application programming interfaces: a “traditional” API where the generator object is created via a new call and where replacement functions are used to exchange default parameters with user defined ones. The second interface uses a string which describes both the desired distribution and the chosen generation method.

3 An R interface

We propose an R interface for this library, called Runuran. This extends the usual functionality for random variate generation in R in several ways. First it is easy to sample from non-standard distributions. Secondly it is possible to choose different methods to achieve a particular distribution, which is not possible in R except for the normal distribution.

The object oriented approach of UNU.RAN is reproduced using S4 classes (Chambers, 2000). This provides nearly all features of UNU.RAN and is very simple to use. In the following chapter we will describe the main ideas of our implementation and give examples how to use UNU.RAN in R.

As we can see in the following example it is very easy to create non-uniform random variates for complicated distributions, e.g. the hyperbolic distribution:

```r
> hyp = new("unur","cont;pdf="1/sqrt(1+x^2)*exp(-2*sqrt(1+x^2)+x)"")
> x<-sample.unur(hyp,10000)
> hist(x,breaks=50)
```

Besides this default string interface of UNU.RAN there is also a second interface available with several strings. The first one describes the distribution, the second one the method and the third one the parameters of the method.

```r
> gen = new("unur",distr="normal();domain=(0,inf)",
method="arou", methodpars="max_sqhratio=0.9")
> x<-sample.unur(gen,10000)
> hist(x,breaks=50)
```

The default settings are used whenever keywords are omitted. The default method depends on the distribution and is documented in Leydold et al. (2002). We define in R a special S4-class named unur with two slots.

```r
> setClass("unur",representation(string="character",p="externalptr"),
prototype = list(string=character(), p="externalptr"))
```

In the slot string we include all necessary information about the distribution, used method etc. to create our "generator object" in UNU.RAN. A full description
can be found in Leydold et al. (2002). The second slot contains an external pointer which refers to a generator object created by the C code.

We have defined a function initialize for our class unur. This ensures that after the creation of a new instance of the class unur, a pointer to the generation object is created and handled by the C code of UNU.RAN.

```r
> setMethod("initialize","unur",
  function(.Object,x=character())
  {
    .Object@p <-.Call("R_unur_init",x)
    .Object
  }
)
```

The setup step of the black-box algorithms is hidden behind this initialization. If it fails the user is informed by an error message. This can happen, for example, if the chosen method does not work for a given distribution.

The user does not need to know anything about the created generator object except that it contains all information to create the random variates very fast and efficiently. Of course UNU.RAN allocates memory which should be deallocated in R. R provides an ideal function named R_RegisterCFinalizer which ensures that the memory will be deallocated by the garbage collector.

Our first version uses only the same built-in uniform RNG for all generators although UNU.RAN can use multiple streams of uniform random number generators. With the functions

```r
> seed.unur(1234)
> reset.unur()
```

we can set and reset the seed.

The following examples should show some interesting features of our interface. We can use different algorithms for a large class of distributions

```r
> gen = new("unur",distr="beta()",method="tdr")
> x<-sample.unur(gen,10000)
```

or we can sample from truncated functions

```r
> gen = new("unur",distr="normal();domain=(-1,1)"
> x<-sample.unur(gen,10000)
```

or we can sample from a kernel density estimate with kernel smoothing

```r
> gen = new("unur",distr="cemp;data=(-0.1,0.05,....)",
  method="empk", methodpars="smoothing=0.8")
> x<-sample.unur(gen,10000)
```
4 Conclusion

Our interface provides the possibility to use a lot of algorithms in R to generate non-uniform variates for large classes of distributions. Due to the implementation of S4-classes the handling is very easy. An R package with automatic installation and documentation is in preparation. A closer relationship between R and UNU.RAN should be possible and easy to realize. For example, to define a distribution function in R and use algorithms of UNU.RAN to generate random numbers. But this makes only sense if we first define a distribution object in R. This is already in planning by a group in Bayreuth (Ruckdeschel and Kohl, 2003). A lot of contributed packages of R use random variates of special distributions but each of these implements its own generator. Therefore we think that a standard description of distribution objects including generation of random variates will be helpful for a lot of code developers in R.

References

Corresponding author

Günter Tirler
Institut für Statistik
Wirtschaftsuniversität Wien
Augasse 2–6
A–1090 Vienna
Austria, EU
Tel: +43 1 313 36 - 4840
Fax: +43 1 313 36 - 738
E-mail: tirler@statistik.wu-wien.ac.at