
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

kernlab – A Kernel Methods Package

Alexandros Karatzoglou
Technische Universität Wien

Alex Smola
Australian National University

Achim Zeileis
Technische Universität Wien

Kurt Hornik
Wirtschaftsuniversität Wien

Abstract

Designing software for Support Vector Machines (SVM) and kernel meth-
ods in general poses an interesting design problem. Our aim is to provide one
possible solution using R object oriented features. kernlab is an extensible,
object oriented, package for kernel-based learning in R. Its main objective is
to provide a tool kit consisting of basic kernel functionality, optimizers and
high level kernel algorithms which can be extended by the user in a very mod-
ular way and tries to solve some of the design problems posed by this kind
of software. Based on this infrastructure kernel-based methods can easily be
constructed and developed.

1 Introduction

Support Vector Machines and other kernel methods elevate the notion of data pre-
processing to another level. It is often difficult to solve problems like classifica-
tion, regression and clustering—or more generally: supervised and unsupervised
learning—in the space in which the underlying observations have been made. One
way out is to project the observations into a higher-dimensional feature space where
these problems are easier to solve, e.g., by using simple linear methods. If the meth-
ods applied in the feature space are only based on dot or inner products the projec-
tion does not have to be carried out explicitly but only implicitly using kernel func-
tions. This is often referred to as the “kernel trick” (Schoelkopf and Smola, 2002).

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

More precisely, if a projection Φ : X → H is used the dot product 〈Φ(x),Φ(y)〉 can
be represented by a kernel function k

k(x, y) = 〈Φ(x),Φ(y)〉, (1)

which is computationally simpler than explicitly projecting x and y into the feature
space H.

Although the kernel theory is old, in the pattern recognition and statistical
learning domain it was used for the first time in SVMs (see Vapnik, 1998) which
were applied to a wide class of problems such as classification and regression (see
e.g. Schoelkopf and Smola, 2002, for a recent survey of applications).

2 Support Vector Machines

The most prominent kernel-based learning algorithm is without doubt the SVM.
Like most kernel-based learning algorithms, SVMs work by embedding the data
into a high dimensional feature space and then searching for linear relations among
the embedded data points. For learning this linear relationship, SVMs use an op-
timization algorithm implementing a learning bias derived from statistical learning
theory (Vapnik, 1998). Different kernels represent different transformations but
since all kernel-based algorithms are using the dot products to do computations one
can easily change the kernel in a modular fashion in any kernel-based algorithm. Us-
ing this trick we can get non-linear variants of any algorithm that can be expressed
in terms of dot products. SVMs are becoming increasingly popular in classification
(with excellent results in Optical Character Recognition (OCR), text classification
and biological sequencing), in regression and novelty detection. They offer stable
results which compare well with most state of the art classification and regression
methods (Meyer, Leisch, and Hornik, 2003).

2.1 Formulation

The solutions to classification and regression problems sought by kernel-based al-
gorithms such as the SVM are linear functions in the feature space:

f(x) = w>Φ(x) (2)

for some weight vector w ∈ F . The kernel trick can be exploited in this whenever
the weight vector w can be expressed as a linear combination of the training points,
w =

∑n
i=1 αiΦ(x), implying that f can be written as

f(x) =
n∑

i=1

αik(xi, x) (3)

The choice of an appropriate kernel k is very important for a given learning task.
We wish to choose an intuitive kernel that induces the “right” metric in the space.

Proceedings of DSC 2003 3

SVMs choose a function that is linear in the feature space by optimizing some
criterion over the sample. In the case of the 1-norm Soft Margin classification the
optimization problem takes the form:

minimize t(w, ξ) =
1
2
‖w‖2 +

C

m

m∑
i=1

ξi

subject to yi(〈xi, w〉+ b) ≥ 1− ξi (i = 1, . . . ,m) (4)
ξi ≥ 0 (i = 1, . . . ,m)

It is obvious that after calculating the kernel matrix the SVM problem simplifies
to a standard quadratic optimization problem. Since the calculation of the kernel
matrix Kij = k(xi, xj) depends only on the choice of the kernel function and the
data we can separate this computation step from the rest of the support vector
computations easily. The formulation of the SVM optimization problem uses the
data only in the form of inner products which are defined by the kernel allowing us
to use any kernel function without changing the rest of the algorithm (kernel trick).
Since the kernel represent the projection of the data into a high dimensional space
this becomes particularly important when one wants to be able to use different
projections in order optimize the performance of the SVM. The choice of a kernel
and its fine-tuning has a massive effect on the result produced by a SVM and
any other kernel method. It is therefore obvious that a modular design of a SVM
Software would be desirable if one would like to be able to implement and use the
ever increasing number of different kernels and algorithms developed in the field.

The SVM quadratic optimization problem can be solved with different optimiza-
tion techniques like Sequential Minimal Optimization (SMO) or interior point codes.
Since there is only one optimal solution for this sort of optimization problems the
result of the SVM does not depend on the choice of the optimization technique.
Usually an optimization technique is chosen which is known to perform well, in
terms of computation time, in this sort of problem.

2.2 libsvm in e1071

The e1071 R package offers an interface to the award winning libsvm a very efficient
SVM implementation. libsvm (Chang and Lin, 2001) provides a robust and fast
SVM implementation and produces state of the art results on most classification
and regression problems (Meyer et al., 2003). The R function svm in e1071 uses all
standard R functionality like object orientation and and formula interface providing
the usual interface for model fitting functions in R. It provides the user with a
powerful tool for standard regression and classification problems. However, most of
the libsvm code is in C++ and therefore if one would like to extend the code with
e.g. new kernels or different optimizers one would have to program the core C++
code. It is therefore obvious that although this monolithic design provides very fast
results it does not allow for the flexibility one would desire for using and testing
new kernels and optimization techniques.

Proceedings of DSC 2003 4

3 Kernels

As pointed out in the previous section the main advantage of kernel functions is that
they allow us to easily use (dot product based) methods in some high-dimensional
feature space, possibly of infinite dimensionality, without having to carry out the
projection into that space explicitly. However, the main disadvantage is that es-
pecially if the number of observations is large this can still be computationally ex-
pensive and burdensome, in particular when the parameters of the kernel function
(so-called hyper-parameters) still have to be optimized (tuned).

The idea of kernels in kernlab is that they S4 objects, which extend the class
"function", implementing the kernel function k(x, y) and returning a scalar, but
possibly having additional information attached which can be used by generic func-
tions performing typical kernel tasks like computing the kernel matrix or the ker-
nel expansion. Additionally, kernel-generating functions for some frequently used
classes of kernels are implemented. For example, a Radial Basis Function (RBF)
kernel with parameter σ = 0.05 could be initialized by:

R> rbf1 <- rbfdot(sigma = 0.01)

R> rbf1

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.01

rbf is then the kernel function of class "rbfkernel" which inherits from "kernel".
Every object of class "kernel" has to take (at least) two arguments and return the
scalar value of their dot product k(x, y):

R> x <- 1:3

R> y <- c(1, 1.64, 3.52)

R> rbf1(x, y)

[,1]
[1,] 0.998002

This is all what is necessary if a user wants to plug in his own kernel: a function of
class "kernel" taking two arguments and returning a scalar. With this function the
kernel matrix Kij = k(xi, xj) can already be computed, but doing so with a for loop
in R might be computationally inefficient. Therefore, kernlab has a generic function
kernelMatrix with a default method for "kernel" objects doing the for loop but
also methods for "rbfkernel" objects calling faster and memory efficient vectorized
code. To make the hyper parameters accessible for these methods, objects of class
"rbfkernel" (and also all other kernel classes implemented in kernlab) have a slot
"kpar" with a list of parameters which can be accessed via

R> gkpar(rbf1)

$sigma
[1] 0.01

Proceedings of DSC 2003 5

Often, it is neither advisable nor necessary to compute the full kernel matrix K
when what is really of interest is not K itself but the Kernel expansion Kα or the
quadratic kernel expression matrix with elements yiyjk(xi, xj). With the same idea
as for kernelMatrix these tasks can be carried out by generic functions kernelMult
and kernelPol with a (probably inefficient) default method and methods for, e.g.,
"rbfkernel" objects calling more efficient code performing block-wise computa-
tions.

The high level algorithms, like SVMs, implemented in kernlab rely on the
kernelMult, kernelPol and kernelMatrix functions. Therefore, if a user wants
to use SVMs with his own kernel all he has to write is a "kernel" function, which
is usually very simple and should be enough to get a first impression of the perfor-
mance of the kernel. If he wants to make the computations more efficient he should
provide methods for the generic functions mentioned above which can do the com-
putations faster than the default method. kernlab provides fast implementations
of the following dot products.

• vanilladot, this function implements the simplest of all kernel functions
namely

k(x, y) = 〈x, y〉 (5)

Still it may be useful, in particular when dealing with large sparse data vectors
x, as is usually the case in text categorization.

• polydot implements both homogeneous and inhomogeneous kernels via the
following function

k(x, y) = (scale · 〈x, x′〉+ offset)degree (6)

It is mainly used for classification on images such as handwritten digits and
pictures of three dimensional objects.

• rbfdot implements Gaussian radial basis function via the following function

k(x, y) = exp(−σ · ‖x− y‖2) (7)

It is a general purpose kernel and is typically used when no further prior
knowledge is available.

• tanhdot this function implements both hyperbolic tangent kernels via the
following function

k(x, x′) = tanh (scale · 〈x, x′〉+ offset) (8)

It is mainly used as a proxy for Neural Networks but there is no guarantee
that a kernel matrix computed by this kernel will be positive definite.

Proceedings of DSC 2003 6

4 Optimizer

In many kernel-based algorithms, learning (or equivalently statistical estimation)
implies the minimization of some risk function. Typically we have to deal with
quadratic or general convex problems for SVMs of the type

minimize f(x)
subject to ci(x) ≤ 0 for all i ∈ [n]. (9)

f and ci are convex functions and n ∈ IN .
kernlab provides an implementation of an optimizer of the interior point family

(Vanderbei, 1999) which solves the quadratic programming problem :

minimize c>x + 1
2x>Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u

(10)

This optimizer can be used in both regression and classification and novelty
detection in SVMs and is known to perform fast on SVM optimization problems.

5 Example using SVM

We will briefly demonstrate the use of the SVM algorithms in kernlab on a binary
classification problem. The data set beeing used (spam) is collected at Hewlett-
Packard Labs, and classifies 4601 e-mails as spam or non-spam. In addition to
this class label there are 57 variables indicating the frequency of certain words and
characters in the e-mail. We split our data set into a two parts using two thirds for
training the SVM and one third for testing.

R> data(spam)

R> n <- nrow(spam)

R> testIndex <- sample(1:n, floor(n/3))

R> spamtrain <- spam[-testIndex,]

R> spamtest <- spam[testIndex,]

Then, we train a C-SVM using the rbf1 kernel function

R> svmmod <- ksvm(type ~ ., data = spamtrain, kernel = rbf1, C = 5)

Finally, we test the model on a testset

R> type.pred <- predict(svmmod, spamtest[, -58])

Comparing the true and predicted type of the e-mails gives the following table

R> table(predicted = type.pred, true = spamtest[, 58])

true
predicted nonspam spam
nonspam 902 61
spam 37 533

with a missclassification rate of 0.064.

Proceedings of DSC 2003 7

6 Conclusion

kernlab aims at providing a modular tool kit for kernel methods with functionality
at three different levels:

• Basic kernel functionality: kernlab contains a rather general class con-
cept for the dot product (kernel) functions with some generic functionality.
Frequently used kernel functions are already implemented along with some
methods for typical kernel tasks (see Section 3). But it is very easy for users
to add their own kernel function, possibly along with further functionality.

• Optimization: Many kernel methods require optimization of the kernel func-
tion parameters, there kernlab already implements the interior point and will
also include sequential minimization optimizers.

• High-level kernel methods: These are algorithms such as SVMs Ker-
nel Principal Component Analysis (PCA), and Kernel Canonical Correlation
Analysis (KCCA), which use the underlying kernel and optimization routines
for their computations. In particular, kernel functions can be easily passed
as arguments and hence users can either use an out-of-the-box kernel already
implemented in kernlab or plug in their own kernel.

Since the package is still in its early development phase many of the higher level
algorithms are still not implemented. Eventually, in addition to tools for developing
kernel-based methods, kernlab will also include many high-level methods ready for
out-of-the-box use.

References

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under
test. Neurocomputing, 2003. Forthcoming.

Bernhard Schoelkopf and Alex Smola. Learning Kernel Methods. MIT Press, 2002.

Robert Vanderbei. LOQO: An interior point code for quadratic programming. Op-
timization methods and Software, 12:251–484, 1999.

Vladimir Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Proceedings of DSC 2003 8

Corresponding author

Alexandros Karatzoglou
Institut für Statistik & Wahrscheinlichkeitstheorie
Technische Universität Wien
Wiedner Hauptstraße 8-10/1071
A-1040 Wien
Austria
Tel.: +43/1/58801-10772
Fax: +43/1/58801-10798
E-mail: Alexandros.Karatzoglou@ci.tuwien.ac.at

mailto:Alexandros.Karatzoglou@ci.tuwien.ac.at

	Introduction
	Support Vector Machines
	Formulation
	libsvm in e1071

	Kernels
	Optimizer
	Example using SVM
	Conclusion

