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Abstract

There exists a growing number of spatial statistics software packages cov-
ering a broad range of methods including the classical technique of kriging
following variogram fitting (for a review see e.g. Bivand and Gebhardt, 2000).
However, most of these programs do not contain tools for assessing the fit of
particular models of the spatial dependencies. Based upon a variogram cloud
estimation method proposed in Miiller, 1999 we present various techniques
for that purpose and their implementations in an R-package called vardiag.
The paper concentrates on the interactive aspect of the problem worked out
in the dissertation of Glatzer, 2002. For the interactive exploration of the fit
several plots (a map view, the square-root-differences cloud and two types of
residual plots) are linked. The proposed tool allows brushing of single points
or sets of points in these plots. The selection of points in one plot is reflected
by an automatic selection of the corresponding parts in the other plots. The
program is exemplified on a data set of chlorid concentrations in the Siidliche
Tullnerfeld.

1 Introduction

The characterization of spatial dependencies is an essential component of the ana-
lysis of isotropic random fields Z(s), s € R%. The so-called square-root-differences
cloud (cf. Cressie, 1993 or Ploner, 1999) serves as a convenient display of such
dependencies. For all location pairs it plots the | Z(s; + h;) — (si)\% = ~; against
their distances ||h;||, where i = 1,.. .,

Typically this cloud exhibits the followmg shape: the entries at short distances
tend to be low with low variation, whereas with increasing distance the entries and
their variation increase. To determine a functional form of the spatial dependency


http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC' 2003 2

one usually fits a parametric model y(6) to the square-root-differences cloud (see a
generic example in Figure 1).
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Figure 1: Square-root-differences cloud with a fitted parametric model (solid line).

Following the technique proposed in Miiller, 1999 for variogram clouds we will
estimate the parameter 6 by feasible generalized least squares, i.e.

0= (XVIX)TIX'V Ty,

where V' is a suitable estimate of the variance-covariance matrix of the residuals

ei = v — () and 47 = (y1,...,%,...). The matrix X contains the regressors
from an adequately linearized model.

2 Residual diagnostics

Studentized square-root-differences cloud

To assess the goodness of the fit of the regression and to identify potential outliers
one can — rather than to employ the original residuals e; — use the studentized
residuals o

(3

\/[V - X(X’f/—lX)—lX’]“-.

r, =

With these studentized residuals one can construct a studentized version of the
square-root-differences cloud. For every pair of observations we plot the sum of the
forecasted value and a corresponding (rescaled) studentized residual, i.e.

{hi,v(0) + ri6}.



Proceedings of DSC' 2003 3

where 6 = /> €2/ [(5) — p] is an estimate for the average standard deviation of
the error term.

In case of a correctly specified model and all assumptions met this plot should
exhibit an approximately symmetric band around the estimated variogram - the
function representing the spatial dependency. Omne possible deviation would be
nonconstant error variance, i.e. varying width of the error band along the horizontal
axis. If the functional form of the model does not correspond to the data, the cloud
will exhibit a different curvature than the fitted model.

A second feature of this plot is the easy identification of outliers. Studentized
residuals should - in case of normal errors - be normally distributed as well. Entries
in the cloud that are far from the fitted curve are thus highly suspicious.

Leave-one-out residual plot

Such entries can be double-checked by using a second plot that instead of the
conventional residuals employs the so-called leave-one-out residuals

e = vi — v (0p)-

Here é[i] is the parameter estimate one receives when the i-th observation is dropped.
It is clear that these types of residuals are more capable of sensing outliers (as well
as influential observations for that matter).

The construction of this second type of residuals is however not entirely unprob-
lematic in our case, since a single entry in the square-root-differences cloud can be
affected by leaving out one of a couple of original observations. Now we have for
each entry in the square-root-differences cloud one conventional residual and two
leave-one-out residuals. We suggest to plot these two sets of leave-one-out residuals
against the conventional residuals and compare their positions relative to the first
meridian.

Decorrelated residual cloud

Finally we would like to take into account that the entries in the square-root-
differences cloud are highly correlated. The model was fitted by generalized least
squares. That is equivalent to an ordinary least squares fit of a transformed model

A|Z(s; + hi) — Z(s:)|F = Avi(0) + Ae,

where A is the Cholesky decomposition such that A’A = V~!. The transformed
residuals Ae are now uncorrelated and can be plotted against the transformed pre-
dictions A'yi(é) to indicate inadequacies.

Other diagnostic tools that can be employed in this context are described in

Haslett et al., 1991 and Barry, 1996.

3 Brushing and linking

As is well disseminated in the literature (see e.g. Bradley and Haslett, 1992 or Buja
et al., 1996) the interactive nature in the form of brushing and linking is essential
for proper exploratory spatial data analysis. The tools for such an analysis - based
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upon the methods described in the previous sections - are part of the R-package
vardiag which can be downloaded from CRAN:
http://CRAN.R-project.org/src/contrib/PACKAGES.html

We have already mentioned that one entry in the square-root-differences cloud
is based on two original observations. When checking suspicious entries in the
square-root-differences cloud it is important to know where the two observations
are located in physical space. The proposed tool allows selection of single entries or
sets of entries. When entries are brushed, the corresponding points in the linked map
view are highlighted automatically. This is a convenient way to find out whether a
suspicious entry (corresponding to a high square-rooted difference of observations)
is based on observations near the border of the region of interest or whether it points
to a region of higher variation within the region.

Since a large square-rooted difference of observations can have several reasons, it
is important to check other diagnostic quantities as well. This could be for instance
the leave-one-out residuals. When an entry in the square-root-differences cloud is
brushed, the corresponding leave-one-out residuals are also highlighted in the linked
plot. This procedure allows different kinds of views onto the data and especially
onto suspicious points.

As an example we use a data set of chlorid concentrations in the Stidliche Tull-
nerfeld measured daily at 20 locations. The data are already detrended and trans-
formed for distributional symmetry. Then an appropriate model v(8) for the spatial
dependence is estimated. The estimated model for this example together with resid-
uals and the variance-covariance matrix of the parameters are also contained in the
package vardiag. The package further contains the borders of the region of interest
as a matrix of coordinates of vertices.

A typical analysis

We begin our analysis by starting R, loading the library vardiag and loading the
data in form of a variogram object and the region matrix.

> library(vardiag)
> data(tulln)

Next we display our set of four diagnostic plots as given in Figure 2:
> PlotDiag.varobj(vs50,tul)

The argument vs50 identifies the data object, the argument tul the region object.
Now we look for suspicious entries in the square-root-differences cloud. After
having identified one such point we initiate the interactive diagnostics:

> interact.varobj(vs50,tul,"s")

After invoking this command the cursor changes to a crosshair signifying that a
point can be selected. We place the cursor near the suspicious point and click the
left mouse button. The result is that the suspicious point is now colored magenta.
The pair of original observations is joined by a magenta line in the map view. One
of these observations is colored blue and all entries in the square-root-differences
cloud corresponding to this observation are also colored blue. Likewise are all leave-
one-out residuals based on this observation colored blue. Analogously the other
observation and all corresponding entries are colored red. Equivalently by issuing
the command


http://CRAN.R-project.org/src/contrib/PACKAGES.html

Proceedings of DSC' 2003 5

> interact.varobj(vs50,tul,"m")

a pair of points can be marked in the map view.
After repeating this procedure several times for different suspicious entries, we
could brush a suspicious subregion in the map view by

> interact.varobj(vs50,tul,"n")

and identifying a polygon by a sequence of left mouse-clicks on the desired vertices.
Similarly by issuing

> interact.varobj(vs50,tul,"t")

a polygon can also be brushed in the square-root-differences cloud.
By issuing the command

> interact.varobj (vs50,tul,"x",pchi=0.05)

all points outside a confidence region in the square-root-differences cloud are auto-
matically selected.
Additionally we can select points from the leave-one-out plot by using

> interact.varobj(vs50,tul,"1")
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Studentized Square Root Cloud
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Decorrelated Residuals
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Figure 2: A typical view of the screen.
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