
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Boosting Methods: Why They Can Be

Useful for High-Dimensional Data

Peter Bühlmann

Abstract

We present an extended abstract about boosting. We describe first in section
1 (in a self-contained way) a generic functional gradient descent algorithm,
which yields a general representation of boosting. Properties of boosting or
functional gradient descent are then very briefly summarized in section 2.

1 Boosting

Originally, boosting has been proposed in the 90’s (Freund and Schapire, 1996) as
a multiple prediction and aggregation scheme for classification: a fitting method or
estimator, called the base learner, is fitted multiple times on re-weighted data and
the final boosting estimator is then constructed via a linear combination of such
multiple predictions or estimates. In most empirical studies, the base learner is a
regression or classification tree, and the improved performance through boosting
has often been demonstrated to be impressive. Recently, some progress has been
made in understanding how boosting algorithms work.

1.1 Functional Gradient Descent

Breiman (1999) has shown that boosting can be viewed as an optimization algorithm
in function space. This important interpretation opened the door to understand
what boosting does and to bring boosting from classification to other settings such
as regression, survival analysis or nonlinear time series. An interesting aspect is also
that boosting is not an “intrinsic” multiple prediction scheme; the latter seems often
somewhat “mysterious” and “ad-hoc”. We will demonstrate that boosting methods
can be successfully used for estimation in structured problems such as additive or
interaction modelling.

We outline now a functional gradient descent method which yields a general
representation of boosting algorithms. Consider the task of estimating a function

New URL: http://www.R-project.org/conferences/DSC-2003/ 

http://www.R-project.org/conferences/DSC-2003/


Proceedings of DSC 2003 2

F : Rp → R, minimizing an expected loss

E[ρ(Y, F (X))], ρ(·, ·) : R× R → R+ (1)

based on data (Yi, Xi) (i = 1, . . . n); Xi denotes a p-dimensional predictor variable
and Yi a response. For expository simplicity, we consider the case with univariate
response Y which can be continuous (regression problem) or discrete (classification
problem). The loss function ρ(·, ·) is assumed to be smooth and convex in the second
argument to ensure that the gradient method works well. The most prominent
examples are:

ρ(y, f) = exp(yf) with y ∈ {−1, 1}: loss function for AdaBoost,
ρ(y, f) = log2(1 + exp(−2yf)) with y ∈ {−1, 1}: loss function for LogitBoost,
ρ(y, f) = (y − f)2/2 with y ∈ R or ∈ {−1, 1}: loss function for L2Boost. (2)

The LogitBoost loss function is equivalent to the log-likelihood function in a bino-
mial model. The population minimizers of (1) are then (cf. ?)

F (x) =
1
2

log(
P[Y = 1|X = x]

P[Y = −1|X = x]
) for AdaBoost and LogitBoost loss,

F (x) = E[Y |X = x] for L2Boost loss. (3)

Estimation of such an F (·) from data can be done via a constrained minimization
of the empirical risk

n−1
n∑

i=1

ρ(Yi, F (Xi)). (4)

by applying functional gradient descent. The minimizer of (4), with respect to F (·),
is imposed to satisfy a “smoothness” constraint in terms of an additive expansion
of (“simple”) base learners (fitted functions) which we denote by

h(·, γ̂)U,X , x ∈ Rd, (5)

where γ̂ is a finite or infinite-dimensional parameter which is estimated from data
(U,X) = {(Ui, Xi); i = 1, . . . , n}, where the Ui’s denote some generalized residuals
or pseudo-response variables (see below). For example, the learner h(·, γ̂)U,X could
be a regression tree where γ̂ describes the axis to be split, the split points and the
fitted values for every terminal node (the constants in the piecewise constant fitted
function). How to fit h(·, γ) from data is part of the learner. For example, when
using least squares

γ̂U,X = argminγ

n∑
i=1

(Ui − h(Xi; γ))2,

or in the nonparametric context, we may think of penalized least squares or local
least squares, localized by a kernel function.

The general description of functional gradient descent is as follows (see also
Friedman, 2001).



Proceedings of DSC 2003 3

Generic functional gradient descent

Step 1 (initialization). Given data {(Yi, Xi); i = 1, . . . , n}, fit a real-valued, (initial)
learner

F̂0(x) = h(x; γ̂Y,X).

When using least squares, γ̂Y,X = argminγ

∑n
i=1(Yi − h(Xi; γ))2. Set m = 0.

Step 2 (projecting gradient to learner). Compute the negative gradient vector

Ui = −∂ρ(Yi, F )
∂F

|F=F̂m(Xi)
, i = 1, . . . , n,

evaluated at the current F̂m(·). Then, fit the real-valued learner to the gradient
vector

f̂m+1(x) = h(x, γ̂U,X).

When using least squares, γ̂U,X = argminγ

∑n
i=1(Ui − h(Xi; γ))2.

Step 3 (line search). Do one-dimensional numerical search for the best step-size

ŵm+1 = argminw

n∑
i=1

ρ(Yi, F̂m(Xi) + wm+1f̂m+1(Xi)).

Update,

F̂m+1(·) = F̂m(·) + ŵm+1f̂m+1(·).

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3.

The learner h(x, γ̂U,X) in Step 2 can be viewed as an estimate of E[Ui|X = x]
and takes values in R, even in case of a classification problem with Yi in a finite set.
We call F̂m(·) the real AdaBoost-, LogitBoost- or L2Boost-estimate, according to
the implementing loss function in (2). We point out that the real AdaBoost method
as described here is slightly different from the popular AdaBoost as proposed by
? for classification; Friedman, Hastie, and Tibshirani (2000) give a more detailed
description.

L2Boost has a simple structure: the negative gradient in Step 2 is the classical
residual vector and the line search in Step 3 is trivial.

L2Boost algorithm

Step 1 (initialization). As in Step 1 of generic functional gradient descent, using a
least squares fit (maybe including some regularization).

Step 2. Compute residuals Ui = Yi − F̂m(Xi) (i = 1, . . . , n) and fit the real-valued
learner to the current residuals by (regularized) least squares as in Step 2 of the
generic functional gradient descent; the fit is denoted by f̂m+1(·).
Update

F̂m+1(·) = F̂m(·) + f̂m+1(·).



Proceedings of DSC 2003 4

Step 3 (iteration). Increase iteration index m by one and repeat Step 2.

L2Boosting is thus nothing else than repeated least squares fitting of residuals
(cf. Friedman, 2001). With m = 1 (one boosting step), it has already been proposed
by Tukey (1977) under the name “twicing”.

For a continuous Y ∈ R, a regression estimate for E[Y |X = x] is directly given by
the L2Boost-estimate F̂m(·). For a two-class problem with Y ∈ {−1, 1}, a classifier
under equal misclassification costs is given by

sign(F̂m(x))

according to the population minimizers in (3).

1.2 Early stopping and resistance to overfitting

In the early area of boosting, it was “commonly believed” that boosting will never
overfit as the boosting or functional gradient descent iteration continues to go on!
By now, it is known that this is not true. We should stop boosting, or the functional
gradient descent algorithm, before numerical convergence (in cases it would converge
numerically). This is a way to regularize and to avoid overfitting.

In some cases, it can be proved that boosting converges numerically to the fully
saturated model, i.e. F̂∞(Xi) = Yi for all i = 1, . . . , n, fitting the data exactly. But
typically, this convergence becomes very slow and it can also be proved for some
learners (e.g. smoothing spline base learners), that the bias of F̂m(·) converges expo-
nentially fast as m →∞ while the variance increases by geometrically diminishing
magnitudes only. This is in sharp contrast to the usual linear increase in variance
when fitting additional terms in a basis expansion or a regression model. It implies
that overfitting comes in very slowly, particularly when the base learner is weak
(low variance). This property turns out to be often beneficial for tuning boosting
methods: due to the resistance against overfitting, tuning boosting via stopping
(choosing the number of boosting iterations) is typically easy. For example, we can
often reliably estimate the number of boosting iterations by cross-validation.

2 Properties of boosting: some references

We touch here very briefly some selected aspects and properties about boosting or
functional gradient descent.

2.1 Boosting is mainly useful for data with high-dimensional
predictors

It is empirically illustrated in Bühlmann and Yu (2003) that boosting has mainly
an advantage for data with high-dimensional predictors. In more classical settings
with reasonable ratio of predictor dimension p and sample size n, flexible modern
regression or classification methods perform as well as boosting.

Consider the Friedman #1 model as an example:

X = (X1, . . . , Xp) ∼ Unif.([0, 1]p)
Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε, ε ∼ N (0, 1). (6)



Proceedings of DSC 2003 5

0 100 200 300 400 500

2
3

4
5

6
7

degree 2 interaction modelling: p = 10, effective p = 5

boosting iterations

M
S

E

boosting
penalized boosting
MARS

0 100 200 300 400 500

2
3

4
5

6
7

degree 2 interaction modelling: p = 20, effective p = 5

boosting iterations

M
S

E

boosting
penalized boosting
MARS

Figure 1: Mean squared error for L2Boosting using componentwise thin plate
splines, a penalized version of L2Boosting, and MARS in the Friedman #1 model
(6) with sample size n = 50. Top: p = 10. Bottom: p = 20. The performance with
AIC-stopped boosting iterations is indicated at abscissa x = 501.



Proceedings of DSC 2003 6

Sample size is chosen as n = 50 and p ∈ {10, 20}; particularly for p = 20, we
have have high-dimensional predictors relative to sample size. Figure 1 displays the
performance of L2Boosting and of a better version based on penalization (see section
2.1.1), and we also compare with MARS (restricted to second order interactions).
The base learner in L2Boosting is a componentwise thin plate spline which chooses
the pair of predictor variables (Xj1 , Xj2) (j1, j2 ∈ {1, . . . , p}, j1 6= j2) such that
smoothing against the chosen two-dimensional predictors yields the smallest residual
sum of squares among all possible pairs (while keeping the degrees of freedom fixed
(low) for all pairs (Xj1 , Xj2)).

2.1.1 Penalized L2Boosting

The L2Boost algorithm is greedy, aiming to maximally reduce the residual sum
of squares in every boosting iteration with a given base learner. The analogue
in the population case is a (theoretical) algorithm which would reduce the mean
squared error (MSE) most in every iteration. Although the MSE is unknown, we
can estimate it via a penalized residual sum of squares: penalized L2Boost then
modifies Step 2 of the L2Boost algorithm by fitting the residual vector with the
base learner such that

residual sum of squares of boosting + AIC-penalty

becomes minimal. For example in additive model fitting with a componentwise
smoothing spline as a base learner, it can be argued that the increase of the AIC
penalty in an additional boosting iteration for fitting a particular predictor variable,
say j∗, is small if variable j∗ has already been selected many times in previous
boosting iterations, and vice versa. Thus, penalized boosting tends to solutions
with fewer selected predictor variables.

The AIC-penalty (or corrected AIC) can be computed from the degrees of free-
dom of L2Boosting (the trace of the L2Boost hat matrix if the base learner is linear).
It is worth mentioning that penalized L2Boost is not an L2 boosting algorithm any-
more since the base learner depends on the residual sum of squares of the current
boosting solution, and not just on the current residuals.

2.2 Boosting does variable selection and assigns variable
amount of degrees of freedom

A possible explanation why boosting performs well in the presence of high-dimensional
predictors is that it does variable selection (assuming the base learner does variable
selection) and it assigns variable amount of degrees of freedom to the selected pre-
dictor variables or terms. So far, theory is lacking whether this kind of allocation
for different amount of degrees of freedom is optimal in any sense. It is worth men-
tioning that with more classical methods and in the presence of high-dimensional
predictors, forward variable or term selections is still feasible but the problem of
assigning varying amount of complexity to the selected predictor variables or terms
becomes computationally very difficult or intractable.

We show in Figure 2 the evolution of selecting predictor variables and degrees
of freedom in additive model fitting using boosting. The true underlying model is

X = (X1, . . . , X100) ∼ Unif.([0, 1]100)



Proceedings of DSC 2003 7

0 20 40 60 80 100

0
2

4
6

8

50 iterations

predictors

df

0 20 40 60 80 100

0
2

4
6

8

100 iterations

predictors

df

0 20 40 60 80 100

0
2

4
6

8

300 iterations

predictors

df

0 20 40 60 80 100

0
2

4
6

8

436 iterations

predictors

df

Figure 2: Degrees of freedom in additive model fitting for all 100 predictor variables
which were assigned during the process of L2Boosting with componentwise smooth-
ing splines; the first ten predictor variables (separated by the dashed vertical line)
are effective. The data is generated from model (7) having sample size n = 200.
The figure on the lower right corner corresponds to the optimal number of boosting
iterations with respect to the corrected AIC statistic.



Proceedings of DSC 2003 8

Y =
10∑

j=1

fj(Xj) + ε, ε ∼ N (0, 0.5), (7)

with nonparametric functions fj(·) having varying curve complexities. Sample size is
chosen as n = 200. The individual signal to noise ratios (SNR) Var(fj(Xj))/ Var(ε)
are as follows:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

SNR 0.17 0.04 0.01 0.21 0.65 0.24 3.79 14.19 7.00 2.00

Thus, the function f8 is most complex, followed by f9 and f7. We use L2Boosting
with componentwise cubic smoothing splines which chooses the predictor variable
Xj (j ∈ {1, . . . , p}) such that smoothing against the chosen one-dimensional predic-
tor yields the smallest residual sum of squares among all possible predictors (while
keeping the degrees of freedom fixed (low) for all predictors Xj). This yields an ad-
ditive model fit, very much different from backfitting, since a linear combination of
estimated functions of selected predictors can be represented as an additive function
in the original predictor variables.

It is interesting to see from Figure 2 that after the AIC-estimated 436 boosting
iterations, only 3 non-effective predictors have been selected and were assigned
relatively low degrees of freedom. Also, most degrees of freedom were assigned to
the 8th predictor variable which is most important (f8 has highest signal to noise
ratio); and the third predictor was never selected because the function f3 has only
very low signal to noise ratio.

2.3 Boosting is asymptotically optimal in the toy problem of
1-dimensional curve estimation

It is shown in Bühlmann and Yu (2003) that L2Boosting with smoothing splines for
a one-dimensional predictor is asymptotically optimal, i.e. it achieves the minimax
mean squared error rate. As an interesting addition, L2Boosting also adapts to
higher order smoothness of the true underlying function. For example, using cubic
smoothing spline base learners, the boosted cubic smoothing spline can achieve a
faster MSE rate than n−4/5 if the underlying function is smooth enough. Note that
this faster rate cannot be achieved by an ordinary, non-boosted cubic smoothing
spline (we would need to take a higher order spline).

2.4 Boosting yields consistent function approximations

There are now several results about consistent function approximation by boosting
algorithms where the function has any fixed finite-dimensional predictor space as
its domain. Most of these works consider regression or classification trees as base
learners. Some references include Jiang (2000), Lugosi and Vayatis (2001), Zhang
(2001), Mannor, Meir, and Zhang (2002), Bühlmann (2002) and Zhang and Yu
(2003). The argument in Bühlmann (2002) can be carried out further to the case
with fast growing number of predictors, or even infinite-dimensional predictors,
where the underlying true function is “sparse”: this may give a clue why boosting
can cope well with very high-dimensional predictors as long as the true underlying
function is within reasonable complexity (Bühlmann and Yu; in progress).



Proceedings of DSC 2003 9

References

L. Breiman. Prediction games & arcing algorithms. Neural Computation, 11:1493–
1517, 1999.

P. Bühlmann. Consistency for l2boosting and matching pursuit with trees and tree-
type basis functions. URL http://stat.ethz.ch/~buhlmann/bibliog.html.
Preprint, 2002.

P. Bühlmann and B. Yu. Boosting with the l2 loss: regression and classification.
Journal of the American Statistical Association, 98:324–339, 2003.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pages 148–156,
1996.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. The
Annals of Statistics, 29:1189–1232, 2001.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statis-
tical view of boosting. The Annals of Statistics, 28:337–407, 2000.

W. Jiang. Process consistency for AdaBoost. The Annals of Statistics, 2000. forth-
coming.

G. Lugosi and N. Vayatis. On the bayes-risk consistency of boosting methods. The
Annals of Statistics, 2001. forthcoming.

S. Mannor, R. Meir, and T. Zhang. The consistency of greedy algorithms for classifi-
cation. In Proc. Fifteenth Annual Conference on Computational Learning Theory
2002 (COLT), 2002.

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.

T. Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 2001. forthcoming.

T. Zhang and B. Yu. Boosting with early stopping: convergence and consistency.
Technical Report 635, Department of Statistics, UC Berkeley, 2003. URL http:
//www.stat.berkeley.edu/~binyu/publications.html.

Affiliation

Peter Bühlmann
Seminar für Statistik
ETH Zürich
CH-8092 Zürich
Switzerland

http://stat.ethz.ch/~buhlmann/bibliog.html
http://www.stat.berkeley.edu/~binyu/publications.html
http://www.stat.berkeley.edu/~binyu/publications.html

	Boosting
	Functional Gradient Descent
	Early stopping and resistance to overfitting

	Properties of boosting: some references
	Boosting is mainly useful for data with high-dimensional predictors
	Penalized L2Boosting

	Boosting does variable selection and assigns variableamount of degrees of freedom
	Boosting is asymptotically optimal in the toy problem of 1-dimensional curve estimation
	Boosting yields consistent function approximations


