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Abstract

Combination strategies in classification are a popular way of overcoming

instabilities in classification algorithms. A direct application of ideas such

as “voting” to cluster analysis problems is not possible, as no a priori class

information for the patterns is available. We present a methodology for com-

bining ensembles of partitions obtained by clustering, discuss the properties of

such combination strategies and relate them to the task of assessing partition

“aggrement”.
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1 Introduction

In the area of classification, combination strategies are a popular way of improving
the recognition rate (Dietterich, 2000; Lam, 2000; Parhami, 1994; Bauer & Kohavi,
1999; Kuncheva, 2000). The combination can be implemented using a variety of
strategies, such as combination of multiple classifiers (Woods et al., 1997; Lam &
Suen, 1995; Schapire et al., 1998), classifier fusion (Cho & Wang, 1995; Keller et al.,
1994), committees of neural networks (Bishop, 1995; Breiman, 1994) and several
combinations of these schemes (Xu et al., 1992; Lee & Srihari, 1993; Lorczak et al.,
1989).

A direct application of such ideas to cluster analysis problems is not possible, as
no a priori class information for the patterns is available. Thus, it is not immediately
clear which cluster from one particular clustering result corresponds to which in an
other result. An obvious idea to identify the data points which have been repeatedly
assigned to the same cluster is the construction of a pairwise concordance matrix
(Fred, 2001). This matrix can then be used as a distance matrix for a hierarchical
clustering algorithm. The main problem of such an approach is the size of such
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a matrix which scales quadratically with the size of the data set, thus becoming
infeasible for large size problems in data mining.

In this paper we present a strategy where different crisp or fuzzy partitions of a
data set can be combined to a new fuzzy partition which optimally represents these
partitions. It is not important whether these different partitions are the results
of the application of different clustering algorithms or the results of the repeated
application of one clustering algorithm with different random initializations. Our
algorithm combines partitions on a sequential basis, thus overcoming the computa-
tionally infeasible simultaneous combination of all partitions. It scales linearly in
the number of data points and the number of repetitions, making it feasible to be
applied to large data sets. The algorithm improves also the ability of a clustering
algorithm to find structures in a data set as it can find any cluster shapes in the
data set and is not confined to certain cluster structures.

This paper is based on Weingessel et al. (1999) where the basic ideas are de-
scribed and Dimitriadou et al. (2002b) where theoretical considerations can be
found.

The paper is organized as follows. In Section 2 we formalize our ideas and
present our combination scheme. Section 3 demonstrates the implementation in R
and some comments on them. The conclusion is given in Section 4.

2 Voting Scheme

2.1 A distance measure between partitions with known la-
bels

We are looking for a partition P of a given data set {x1, . . . , xN} into k classes which
optimally represents a given set of M partitions of the same set. Each of these M

partitions is represented by an N ×k membership matrix U (m),m = 1, . . . ,M . The
element u

(m)
ij of U (m) is the degree of membership of xi to the jth class of the mth

partition. We denote the ith row of U (m) as u
(m)
i , that is u

(m)
i is the membership

vector (or membership function) of the data point xi for the partition U (m). The
final partition P is encoded as an N × k matrix with elements pij and rows pi.

For the moment, we assume that the cluster labels are known, i.e., we are in a
case corresponding to classification. As dissimilarity function h(U (m), P ) between
U (m) and P we use the average square distance between the membership functions
u

(m)
i and pi for all xi (Dubois & Prade, 1980; Kacprzyk, 1976). That is,

h(U (m), P ) :=
1
N

N∑
i=1

||u(m)
i − pi||2 (1)

If U (m) and P are both crisp partitions, that is, one element of u
(m)
i and pi

respectively equals 1, all others are 0, then Equation (1) measures the relative
number of data points xi which belong to different classes in U (m) and P . That
is, in the sense of classification, Equation (1) measures exactly the misclassification
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rate, if we consider P as the correct classification and U (m) as the result of one
classifier.

We want to find a partition P which optimally represents a set of given parti-
tions U (m). We chose as an optimality criterion the average dissimilarity function
h(U (m), P ), which should be minimal. Thus, the task is to find P in such a way
that

min
P

l(U (1), . . . , U (M);P ) := min
P

(
1
M

M∑
m=1

h(U (m), P )

)
(2)

is minimized over all P .

2.2 Derivation of the Algorithm

The above considerations are valid for the classification case where the partitions
given by U (m) are fixed in the sense that for all m the first column of U (m) corre-
sponds to the first class, the second column to the second class and so on.

Things are different in clustering where it is not clear which class number (label)
is assigned to which class in each run. That is, any relabeling of the classes, which
can be written as a column permutation Πm(U (m)), is to be considered the same
partition. Thus, partitions U (m) and Πm(U (m)) which only differ by a permutation
of the class labels, are to be considered the same and thus we demand that the
distances stay the same

h(U (m), P ) = h(Πm(U (m)), P ), ∀P (3)

where Πm(U (m)) is any permutation of the columns of U (m). To ensure the validity
of (3) we have to extend the dissimilarity function (1). As we are interested in
finding similar partitions it is natural to use the following definition.

Definition The dissimilarity function h(U (m), P ) between two clustering parti-
tions U (m) and P is

h(U (m), P ) := min
Πm

(
1
N

N∑
i=1

||Πm(u(m)
i )− pi||2

)
(4)

where the minimum is taken over all possible column permutations Πm.
Inserting into the loss functional (2), we finally get

l(U (1), . . . , U (M);P ) = min
Π1,...,ΠM

(
1
M

M∑
m=1

h(U (m), P )

)
(5)

The task of finding an optimal partition P is given by the minimization problem

min
P

l(U (1), . . . , U (M); P ) = min
p1,...,pN

min
Π1,...,ΠM

(
1

M

M∑
m=1

1

N

N∑
i=1

||Πm(u
(m)
i ) − pi||2

)
(6)

which we are aiming to solve with our voting algorithm. That is, we are looking
for an optimal relabeling of the clusters (minimization over Πm) to identify corre-
sponding clusters in the different partitions and for an optimal combination of these
relabeled clusters (minimization over pn).
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Note that, for finding an optimal P , we have to minimize pi and Πm simulta-
neously, because the choice of the permutations Πm depends on the values of pi.
Therefore, a direct solution of the minimization problem (6) is infeasible, since it
requires an enumeration of all possible column permutations.1

For establishing an approximation algorithm we first transform the minimization
problem into another optimization problem.

Theorem 2.1 The solution of (5) is equivalent to the solution of

max
Π1,...,ΠM

1
N

N∑
i=1

||pi||2 (7)

under the constraint

pi =
1
M

M∑
m=1

Πm(u(m)
i )

2.3 Description of the Voting Algorithm

We will now describe the voting algorithm which is based upon the mathematical
considerations in the previous section.

Suppose we have a set of M partitions U (m) of the same data set. In the following
P (m) will denote the voting result after the first m steps, P = P (M) the final result.

Algorithm Voting()

1. Set P (1) := U (1) and Π̂1 = id.

2. For m = 2 to M

(a) Compute the solution Π̂m of

max
Πm

tr

(
(

m−1∑
l=1

Π̂l(U
(l)))′Πm(U (m))

)
=̂ max

Πm

tr
(
(P (m−1))′Πm(U (m))

)
That means permute the labels of the mth partition U (m) such that

tr
(
(P (m−1))′Πm(U (m))

)
is maximized. That is maximize the diagonal of

the confusion matrix of P (m−1) and U (m).

(b) Compute the voting result P (m) after m runs as

P (m) =
1
m

m∑
l=1

Π̂l(U
(l)) =

m− 1
m

P (m−1) +
1
m

Π̂m(U (m))

In order to compute step (2a) we must maximize over all k! permutations of the
cluster labels. Whereas this is fast for a small number of clusters k, this might need
its time for higher values of k. For such cases we use the following approximation
algorithm to relabel a partition U to fit to a partition P .

1The solution of our minimization problem is not unique, since the numbers of the classes

(labels) in the final result are arbitrary. We can set for example Π1 ≡ id, thus avoiding a global

maximum which is trivially non-unique.
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1. Build up the confusion matrix between P and U .

2. Find the maximum element in this confusion matrix.

3. Associate the two clusters corresponding to the maximum element.

4. Remove these two clusters.

5. With the reduced confusion matrix goto 2.

Another possibility to solve the above problem in cubical time is the usage of
the Hungarian algorithm (Papadimitriou & Steiglitz, 1982).

Theorem 2.2 The Voting algorithm yields the stepwise optimal solution to the
reduced version of (6)

min
p1,...,pN

min
Π̂m

(
1
m

m∑
l=1

1
N

N∑
i=1

||Π̂l(u
(l)
i )− pi||2

)
(8)

After voting of M runs we get for every data point xi and every cluster k a
value pik which gives the fraction of times this data point has been assigned to this
cluster. For interpreting the final result we can either accept this fuzzy decision
or assign every data point xi to that cluster k = argmaxj(pij) where it has been
assigned most often.

The voting result gives also structural information of the data set. We define
the sureness of a data point as the percentage of times it has been assigned to its
“winning” cluster k, that is sureness(x) = maxj(pij). The sureness of a data point
shows how strong a certain point belongs to its cluster. We can also see how clearly
a cluster is defined by computing the average sureness of a cluster (Avesure) as the
average sureness of all the points of a cluster that belong to it.

3 Implementation in R

All our experiments have been performed in R (Ihaka & Gentleman, 1996), a sys-
tem for statistical computation and graphics, which implements the well-known S-
language for statistics. R runs under a variety of Unix platforms (such as Linux) and
under Windows95/98/ME/2000/NT. It is available freely via CRAN, the Compre-
hensive R Archive Network, whose master site is at http://www.R-project.org.

As the voting algorithm can be applied to the result of any cluster procedure,
the implementation should allow a wide variety of cluster algorithms to use. As the
results of cluster algorithms are random and we want to make the results repeatable,
the algorithm should also allow the use ready cluster results.

The crisp and fuzzy clustering algorithms used for our experiments can be found
in the cclust (Dimitriadou, 2002), e1071 and (Dimitriadou et al., 2002a) packages.
kmeans (Linde et al., 1980; Fritzke, 1997), hard competitive learning Fritzke (1997),
and unsupervised fuzzy competitive learning clustering runs are used for the ensem-
ble partition.
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Figure 1: Stepwise kmeans ensembles

Cassini 2-Dimensional Data Set This data set is 2-dimensional with data
points uniformly distributed within the structures seen in Figure 1. This data set
is generated in R and can be found in a collection package of benchmark data sets
(see mlbench (Leisch & Dimitriadou, 2001)). The middle structure consists of 900
data points whereas both the external ones consist of 1500 points. Typical results of
k-means clustering and the result which yielded the minimum error in all runs show
that k-means (kmeans), hard competitive learning (hardcl) and unsupervised fuzzy
competitive learning (ufcl) divides one of the two big structures into two clusters,
thus ignoring the small cluster in the middle.

To illustrate the functionality of the voting algorithm we present two figures. In
Figure 1 we show a typical result of a k-means run (left), the result of combining
20 cluster results (middle) and the result of combining 50 runs (right). We can see
that the results gradually improve as more cluster results get mixed.

In Figure 2 we compare the results of 50 voting runs between different base
clustering algorithms, namely k-means, hard competitive learning and unsupervised
fuzzy competitive learning. The final figure gives the combination of all 150 cluster
runs combined. We see that the k-means results does resemble the three parts
worst. This can be explained by the fact that k-means usually only converges into a
few number of different results thus giving not much diversity for the combination
scheme. Hard competitive learning optimizes the same error function as k-means
but, as an online algorithm, does not converge in exactly the same results. Finally,
the fuzzy clustering algorithm also incooperates membership functions also in the
single cluster runs.

4 Conclusion

In this paper we present a method to combine the results of several independent
cluster runs by voting between their results. Our sequential scheme helps us to
overcome the computationally infeasible simultaneous combination of all partitions.
It allows us to deal with the problem of local minima of cluster algorithms and to
find a partition of the data which is supported by repeated applications of the
cluster algorithm and not influenced by the randomness of initialization or the
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Figure 2: Ensemble Results
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cluster process itself.

voting Voting in Clustering

Description

An ensemble clustering method that combines several clustering results to a
final partition.

Usage

voting (x, centers, rep=100, baseClAlg = cmeans, ClMethod = "cmeans",
crisp = TRUE, matchmethod= "exact", crosstab ="sum", verbose= FALSE,
ReadyResults = NULL, weight = rep(1/rep, rep), mix = TRUE, ...)

Arguments

x The data matrix where columns correspond to variables and
rows to observations

centers Number of clusters or initial values for cluster centers

rep Number of clustering results to vote on

baseClAlg The algorithm used for the single clustering results

ClMethod The method of the algorithm used

crisp If the voting takes place on the crisp membership or the fuzzy
membership of the data points in the clusters

matchmethod the permutation method used for finding the associated clus-
ters

crosstab the criterion used for the clusters association in the diffusion
matrix

verbose If TRUE, print the number of the clustering run

ReadyResults Initialize with ready clustering results

weight The weight of every clustering result on the final voted parti-
tion

mix If TRUE the order of the ready results is mixed

... Parameters for the clustering algorithms can be given as ar-
guments
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Details

The data given by x is clustered by the ensemble clustering method.

If centers is a matrix, its rows are taken as the initial cluster centers. If
centers is an integer, centers rows of x are randomly chosen as initial values.

The number of the clustering results to be combined by voting is given by rep.

The name of the function used for the clustering results. If "cclust" then the
crisp clustering methods are used. Note that cclust package is required. If
"cmeans" then the fuzzy clustering methods from package e1071 are used.

The clustering method is defined. For example if baseClAlg=cmeans and
ClMethod="ufcl" then the on-line unsupervised fuzzy competitive learning
method is used (from the function "cmeans").

If crisp=TRUE then the crisp memberships of the data points in the clusters
are considered for voting; otherwise the fuzzy (for the fuzzy algorithms).

If mathmethod="exact" all the cluster permutation are considered for the as-
sociation of the clusters to each other. For more details see aliasmathClasses.

If crosstab="sum" then the diagonal of the confusion table is maximized. If
crosstab="rowmean" (crosstab="colmean") then the rows (colums) of the
confusion table are normalized before the diagonal maximization.

If verbose is TRUE, it displays for each iteration the number the value of the
objective function.

If ReadyResults then a list of the clustering results of the "cclust" or "fclust"
class is given.

The weight of each clustering result on the final voting partition is given by
weight. By default all the clustering results are equally weighted.

If mix is TRUE, then the order of the clustering results given in ReadyResults
is randomly mixed.

Value

membership a matrix with the membership values of the data points to
the clusters.

centers The centers of the ensemble, final, voting partition.

ClCenters The permuted centers of the clustering results.

size The number of data points in each cluster.

cluster Vector containing the indices of the clusters where the data
points are assigned to. The maximum membership value of a
point is considered for partitioning it to a cluster.

baseClResults=baseClResults

A list with the single clustering results.
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Examples

# a 2-dimensional example

x <- rbind(matrix(rnorm(100,sd=0.3),ncol=2),

matrix(rnorm(100,mean=1,sd=0.3),ncol=2))

vot <- voting(x,2,50)
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