
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Putting RGtk to Work

Jim Robison-Cox∗

Abstract

The RGtk package provides one way to build statistical applications in R
which can be controlled by the user through a graphical user interface. RGtk
is an adaptation of the GTK library of the Free Software Foundation (Gnu
Project). In this paper an example GUI is built to illustrate usage of the
RGtk package. The basic concepts of widgets and callbacks are demonstrated
so that those familiar with programming in R will be able to build graphical
applications.

1 Motivation

Graphical applications are useful for many purposes, including avoidance of the
command line interface for repetitive analyses by non-statisticians, and for devel-
opment of pedagogical tools. In this paper, the motivation for development will be
a particular teaching tool. Any of the computer simulation modules described in
Mills (2002) would be appropriate for a demonstration. I have chosen one which
goes beyond the statistical capabilities of a spreadsheet, using a resistant regres-
sion routine and local smoother. The R statistical program (Ihaka and Gentleman,
1996) will be used for the underlying computation. For the particular unit to be
taught, suppose that we are introducing ideas of fitting points to a linear model,
and would like students to understand that choices are made in deciding which line
is “best-fitting”. We want them to see that the least squares line, in particular, is
influenced by movement of a single point.

The intended audience for this demonstration is a group of neophytes in statis-
tics; people who would be uncomfortable with a command-line interface. In fact,
even if programming skill could be assumed, the ideal pedagogical technique would
be graphical rather than command-line oriented so that the student’s attention

DSC 2003 Working Papers 2

would be on the picture rather than on the code used to invoke the demonstra-
tion. In order to use R from graphical interface rather than its native command
line interface, we are changing the types of events to which our program must re-
spond. The R engine expects command line inputs, and, if so instructed, can also
process mouse clicks in a plotting region with the locator function. In contrast,
the GUI approach requires detection of any of possibly many user inputs, either by
keystrokes in a text window or by mouse actions. The GUI must translate inputs
into calls to R, and output from R commands must be used to update the display.

A variety of methods are available for producing graphical interfaces to R pro-
grams. There has been a flurry of interest in GUI’s for R in the Fall of 2002 on the R-
Help mailing list (https://www.stat.math.ethz.ch/pipermail/r-help/ contin-
ued on http://www.sciviews.org/_rgui/) but no agreement on a favorite graphi-
cal toolkit. For instance with the tcltk package, one of the earliest unix GUI’s for R,
Peter Dalgaard (2002) has provided tkcanvas which meets many of the objectives
for the proposed regression demo. Many other graphical toolkits are being used to
develop GUIs with R, for instance, ObveRsive (http://obversive.sourceforge.net/),
a recent addition, uses the FOX graphical toolkit. Without claiming that gtk (from
GIMP ToolKit, http://www.gtk.org/) is the best graphical toolkit for use with R,
I would note that it is GPL, is available for many platforms including Gnu/Linux,
Unix, MSWindows, and MacOSX. Another advantage, as implemented in RGtk
by Duncan Temple Lang is http://www.omegahat.org/RGtk/index.html that the
code makes use of R object classes, and is written entirely in R, avoiding languages
such as C. Like most toolkits, it contains a full set of graphical tools, and, unfortu-
nately, the help system is not fully developed.

The remainder of this paper is a brief tutorial describing how the regression
demo can be built in RGtk.

2 GTK

2.1 Widgets

The basic building blocks to be combined into a GUI are called widgets. Those
of particular interest to the R programmer include menus, buttons, sliders, and
text boxes for user input; text boxes and plotting areas for user output. Widgets
are typically created, given the desired attributes, and then packed into windows.
With RGtk, control over widgets utilizes the class attributes of objects to determine
which GTK function to call. For example, in the code below, a simple text widget
is created, and text is inserted into the widget.

> textx <- gtkText() ## Creates a widget by calling S_gtk_text_new
> attributes(textx) ## Check its attributes
$class
[1] "GtkText" "GtkWidget" "GtkObject"
> textx$Insert(chars=xtxt, length= nchar(xtxt)) ## or
> gtkTextInsert(textx, chars=xtxt, length= nchar(x))

both call the function S_gtk_text_insert

DSC 2003 Working Papers 3

The last two lines perform the same action because textx$Insert is interpreted
by utilizing the class attribute of textx, GtkText, and is translated into a call
to gtkTextInsert. Similarly one could create an object of class GtkMenu called
menu1 and use menu1$Insert() to invoke the gtkMenuInsert function, a binding
to S_gtk_menu_insert. The code which follows uses the shortened forms wherever
possible.

The process of developing a graphical application involves:

1. Creating appropriate widgets,

2. Displaying the widgets,

3. Capturing user-initiated events, and

4. Updating output based on user inputs.

These four steps will be illustrated as the regression demo is built.

2.2 Widget Creation

One starts by creating a window for display. It’s easiest to display the window after
all its internal constituents have been built, so the show argument is initially set to
FALSE.

wRegDemo <- gtkWindow(show=FALSE) ## Create Display Window
wRegDemo$SetTitle("Regression Demo") ## Give it a title

Within the window we want several components. These will be “packed” into boxes.
Boxes can be either vertical or horizontal stacks of widgets. We will use one of each.

box1 <- gtkVBox(show =FALSE) ## Create a Vertical box
wRegDemo$Add(box1) ## Add it to the display window
box2 <- gtkHBox(show=FALSE) ## Create a Horizontal box

To use only basic widgets available on all platforms, the x and y values for the
regression will initially be displayed in text boxes which the user can edit. Separate
text boxes are used for each variable.

textx <- gtkText() ## Create a text box
textx$SetEditable(TRUE) ## Make it user-editable
x <- sort(rnorm(10, 100,10)) ## create some data and a data frame
reg.frame <- data.frame(y = round(x + rnorm(10,0,4)), x=round(x))
xtxt <- paste(c("x", as.character(reg.frame$x)), collapse="\n")
textx$Insert(chars=xtxt, length= nchar(xtxt))

Insert the x values into the text box

The response (y) values are generated from the x’s and inserted as character values
into their own text box.

DSC 2003 Working Papers 4

texty <- gtkText()
texty$SetEditable(TRUE)
ytxt <- paste(c("y",as.character(reg.frame$y)), collapse="\n")
texty$Insert(chars=ytxt, length= nchar(ytxt))

Finally, we need a drawing region, so we will create a drawing area widget. In
order to use the drawing area as our graphics device, we also need the gtkDevice
package.

require(gtkDevice)
drawArea <- gtkDrawingArea() ## Create the widget
drawArea$SetUsize(300,300) ## specify the size
asGtkDevice(drawArea) ## set as graphics device for R

Note: Use of the DrawingArea device gives R control of the drawing area. The
individual points and elements of the graph are not widgets and are not clickable
using GTK event control.

2.3 Arranging and Displaying Widgets

For this simple example, the text and drawing area widgets will be displayed side-
by-side in the horizontal box, box2. The PackStart function places them into box2
from left to right (PackEnd would place them from right to left).

box2$PackStart(textx); textx$Show()
box2$PackStart(texty); texty$Show()
box2$PackStart(drawArea); drawArea$Show()

The horizontal box is ready to be placed into the vertical box, but first a label
will be added to give the user minimal instructions.

label1 <- gtkLabel("Change numerical values to move points.",
show=FALSE)

label1$SetJustify("left")
label1$Show()
box1$PackStart(label1)
box1$PackStart(box2)
box2$Show()
box1$Show()

The only visual missing from our simple demo is the plot of the points. Since
this will be repeated when points are changed, it needs to be a function. The data
plotted will always come from the data frame assigned above, so the function needs
no arguments.

redraw <- function(){
function to plot points and draw regression line
plot(y ~ x, data = reg.frame,

DSC 2003 Working Papers 5

xlab = "x",ylab="y", pch = 16, col=4)
abline(lm(y~x, data = reg.frame))

}
redraw()

Finally we change the attribute of the display window to make everything ap-
pear, as shown in Figure 1.

wRegDemo$Show()

Figure 1: Screen-shot of the Simple Regression Demonstration

2.4 Capturing User Interaction and Updating

The next task is to build callbacks which will register user inputs and update the
displayed output. In this case, the user needs to be able to change the values of x
and y coordinates. When such changes occur, the demo should redraw the points
and the regression line. Definition of a callback requires specification of the widget
involved, the action to capture, and the function to be invoked. For the demo,
callbacks are needed for each of the two text windows. When the user inserts text
the data frame, reg.frame, will be updated and the plot redrawn (no action is
taken when text is deleted).

textx$AddCallback("insert-text", ## Add Callback when x is changed
function(...) { ##need a timer here to slow input?

DSC 2003 Working Papers 6

tmp <- textx$GetChars(start=0, end=textx$GetLength())
reg.frame$x <<- as.numeric(unlist(strsplit(tmp,"\n"))[-1])
redraw()

})
texty$AddCallback("insert-text", ## callback for when y is changed

function(...) { ##need a timer here to slow input
tmp <- texty$GetChars(start=0, end=texty$GetLength())
reg.frame$y <<- as.numeric(unlist(strsplit(tmp,"\n"))[-1])
redraw()

})

The above implementation is clumsy in that if a user is inserting a number which
is more than a single character, the callback is activated for each digit, rather than
at the end of the inputs. It also suffers from jumpiness, in that the range of x and
y plotted depend on the values specified, so when points change, the plotting area
shifts. The first extension we will consider removes these problems.

3 Extensions

3.1 RGtkExtra

Another set of bindings provided by Duncan Temple Lang, the RGtkExtra package
(http://www.omegahat.org/RGtkExtra/) , allows one to use a spreadsheet wid-
get based on the gtk+extra library (http://gtkextra.sourceforge.net/). The
package also provides icon lists and directory trees, but has the disadvantage of
being unavailable for MSWindows platforms. Installing the gtk+extra library is
non-trivial, requiring several other libraries, as documented at
http://gtkextra.sourceforge.net/.

Using the data sheet, the predictor and response can be displayed as a two-
column spreadsheet. When the user changes a cell and presses enter (or up/down
arrow), a callback performs the same updates as before, but now data points will not
be moved out of the viewing area. The following code was inserted before definition
of the text boxes for x and y, and the text box definitions used above were wrapped
into an else statement.

if(require(RGtkExtra)){
Use code from dataViewer in RgtkViewers package by D. Temple Lang.
sheet <- gtkSheetNew(rows=nrow(reg.frame), cols=2, show = FALSE)
sheet$ColumnButtonAddLabel(0, "x") ## First column label
sheet$ColumnButtonAddLabel(1, "y") ## Second column label
sheet$ShowColumnTitles()
for (j in 1:2) { ## Set initial values
for (i in 1:nrow(reg.frame)) {

sheet$SetCellText(i - 1, j - 1, as.character(reg.frame[i,j]))
} }

sheet$AddCallback("set-cell", function(sheet, i, j) {

DSC 2003 Working Papers 7

Function to replot points and redraw the regression line
If input is off the "page", it moves points
to the edge of the plotting region.
newVal <- as.numeric(sheet$CellGetText(i, j))
if (reg.frame[i + 1, j + 1] != newVal){
if(j == 0){ ## the ’x’ column
if(newVal < xlimits[1]){
newVal <- ceiling(xlimits[1])
sheet$SetCellText(i, j, as.character(newVal))

}
else if(newVal > xlimits[2]){

newVal <- floor(xlimits[2])
sheet$SetCellText(i, j, as.character(newVal))

} }
else if(j == 1){
if(newVal < ylimits[1]){

newVal <- ceiling(ylimits[1])
sheet$SetCellText(i, j, as.character(newVal))

}
else if(newVal > ylimits[2]){

newVal <- floor(ylimits[2])
sheet$SetCellText(i, j, as.character(newVal))

} }
reg.frame[i+1,j+1] <<- newVal
redraw()

}
})
box2$PackStart(sheet)
sheet$Show()

}
else{

text box code from version 1 goes here
}

Notes: The cell indices returned by gtk are 0-based, so add 1 to use them as
indices in R. One callback for the entire sheet is used, rather than one for x, and
another for y.

The demo using a data sheet is shown in Figure 2.

3.2 More Widgets

Several other types of widgets will be added to illustrate various capabilities of
RGtk. First, check buttons will be added to allow the user to choose which lines
will be plotted (least squares and/or a robust fit). Each check box has its own
callback, which will change the redraw function.

Button to choose lm fit

DSC 2003 Working Papers 8

Figure 2: Screen-shot of Regression Demo Using Data Sheet

checkLM <- gtkCheckButtonNewWithLabel("Show Least Squares Fit (Black)",FALSE)
checkLM$SetUsize(20,20)
Button to choose resistant fit
require(MASS) ## (Venables and Ripley, 2002)
checkRLM <- gtkCheckButtonNewWithLabel("Show Resistant Fit (Red)", FALSE)
checkRLM$SetUsize(20,20)
checkRLM$SetActive(FALSE) ## Set lm fit to be drawn initially
checkLM$SetActive(TRUE) ## Set rlm fit to be undrawn initially

Add callbacks for the toggled buttons
checkLM$AddCallback("toggled", quote(redraw())) ## redraw if toggled
checkLM$Show()
checkRLM$AddCallback("toggled", quote(redraw())) ## redraw if toggled
checkRLM$Show()

redefine the redraw function to include robust fit and lowess smoother
loess.span <- .5
redraw <- function(){

function to plot points and draw regression line
plot(y ~ x, data = reg.frame, xlim=xlimits, ylim=ylimits,

xlab = "x",ylab="y", pch = 16, col=4)
if(checkLM$GetActive()) abline(lm(y~x, data = reg.frame), col=1)
if(checkRLM$GetActive()) abline(rlm(y~x, data = reg.frame), col=2)

DSC 2003 Working Papers 9

lines(lowess(reg.frame$x, reg.frame$y, loess.span), col=4)
}

The callbacks are activated whenever the check boxes are “toggled”, meaning when-
ever the user clicks them on or off. Their actions are to invoke the redraw function
which now assess the state of each check box in order to add – or not – the appro-
priate line to the plot.

Next, to illustrate the use of a sliding scale, a loess smoother will be added.
(No justification will be made for pedagogical appropriateness.) Whenever the user
changes the scale, the callback will redraw the plot. The gtkAdjustment function
sets up the initial value of the scale, the lower and upper limits, and the increments
of change per mouse-click.

Define the range of values for loess.span and the increments of movement
This allows the span to vary from 0 to 1 with increments of .1
smoothness <- gtkAdjustment(loess.span, 0, 1.1, .1, .1, .25)
hscale <- gtkHScale (smoothness)
hscale$SetUsize (100, 20)
Create a callback for when the slider thumb is moved.
smoothness$AddCallback("value-changed",

function(adj) { ##need a timer here to slow input for dragging
tmp <- adj$GetValue()
loess.span <<- tmp
redraw()

})

In order to pack the new widgets and a label into the display window, I will use a
table which is more efficient than several boxes.

label2 <- gtkLabel(paste(
"Smoothness of the Lowess smoother goes from 0 to 1.",
"Move the slider to set the smoothness",sep="\n"), show=FALSE)

Create table to hold Check Buttons and loess-smoothness slider
table1 <- gtkTable(3,2, homo=TRUE, show=FALSE)
table1$Attach(checkLM, left.attach=0, right.attach=1,
top.attach=0, bottom.attach=1) ## Top Left Cell

table1$Attach(checkRLM, left.attach=0, right.attach=1,
top.attach=1, bottom.attach=2) ## Bottom Left Cell
table1$Attach(label2, left.attach=1, right.attach=2,
top.attach=0, bottom.attach=1) ## Top Right Cell
label2$Show()
table1$Attach(hscale, left.attach=1, right.attach=2,
top.attach=1, bottom.attach=2) ## Bottom Right Cell
hscale$Show()

Finally, text boxes are added to output the equations of the lines. Unlike those
used for x and y inputs, these are not set as editable. Because the code adds nothing
new, it is not shown here. The final demo is shown in Figure 3.

DSC 2003 Working Papers 10

Figure 3: Screen-shot of the Final Regression Demonstration

DSC 2003 Working Papers 11

4 Getting Help

RGtk and RGtkExtra do not have help pages for each function. Current best
advice is to locate the desired gtk functions from gtk help pages, and then find the
corresponding R function.

Help is available for gtk functions on the web. The gtk site offers a reference
manual, http://developer.gnome.org/doc/API/gtk/index.html, and a tutorial,
http://www.gtk.org/tutorial/. Some of the widgets are not currently docu-
mented. The developers’ advice is to read the headers of those widgets to find out
what inputs are needed and what outputs are available. That advice (and the tu-
torial in general) assumes one can read and understand C code, but other choices
are available. Bindings have been created to translate Python to gtk. The pygtk
tutorial is much easier to translate into R than the C API version. It’s online at
http://www.moeraki.com/pygtktutorial/pygtktutorial/ For Perl users, a use-
ful tutorial is http://personal.riverusers.com/~swilhelm/gtkperl-tutorial/.

Once the appropriate gtk functions have been found, one may list the corre-
sponding R functions using ls() and find their arguments. In the following exam-
ple, search() was used to determine that package:RGtk was in the fourth position.
All functions associated with “CheckButton” are listed, and arguments for one of
the functions are shown.

> ls(pos=4,patt="CheckButton")
[1] "gtkCheckButton" "gtkCheckButtonNew"
[3] "gtkCheckButtonNewWithLabel"
> args(gtkCheckButtonNewWithLabel)
function (label, show = TRUE, .flush = TRUE)

Acknowledgments: Thanks go to Duncan Temple Lang for not only developing
the RGtk bindings, but also for generously answering many questions.

References

Dalgaard, Peter. (2002) “Changes to the R-Tcl/Tk package”, R News 2:3,
25–27. http://CRAN.R-project.org/doc/Rnews/

Ihaka, Ross, and Gentleman, Robert. (1996) “R: A language for data analysis
and graphics”, Journal of Computational and Graphical Statistics, 5(3): 299-
314.

Mills, Jamie D. (2002). “Using Computer Simulation Methods to Teach
Statistics: A Review of the Literature” Journal of Statistics Education 10:1.

Temple Lang, Duncan, (2002). “The RGtk package”
<http://www.omegahat.org/RGtk/index.html> Nov. 30, 2002.

Temple Lang, Duncan, (2002). “The RGtkExtra package”
<http://www.omegahat.org/RGtkExtra/index.html> Nov. 21, 2002.

Venables, William N., and Ripley, Brian D. (2002) Modern Applied Statistics
with S, Springer, New York.

	Motivation
	GTK
	Widgets
	Widget Creation
	Arranging and Displaying Widgets
	Capturing User Interaction and Updating

	 Extensions
	RGtkExtra
	More Widgets

	Getting Help

