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Abstract

Random variate generation is an important tool in statistical comput-
ing. Many programms for simulation or statistical computing (e.g. R) provide
a collection of random variate generators for many standard distributions.
However, as statistical modeling has become more sophisticated there is de-
mand for larger classes of distributions. Adding generators for newly required
distribution seems not to be the solution to this problem. Instead so called
automatic (or black-box) methods have been developed in the last decade for
sampling from fairly large classes of distributions with a single piece of code.
For such algorithms a data about the distributions must be given; typically
the density function (or probability mass function), and (maybe) the (approxi-
mate) location of the mode. In this contribution we show how such algorithms
work and suggest an interface for R as an example of a statistical library.

1 Introduction

Random variate generation is an important tool in statistical computing. Many
programms for simulation or statistical computing (e.g. R) provide a collection of
random variate generators for many standard distributions. There exists a vast
literature on generation methods for standard distributions; see, for example, the
books by Devroye [4], Dagpunar [3], Gentle [5], or Knuth [8]. These books are
usually the source for algorithms implemented in software. These algorithms are
often especially designed for a particular distribution and tailored to the features
of each probability density function. The designing goals for these methods are fast
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generators and/or simple code. However, as statistical modeling has become more
sophisticated there is demand for larger classes of (non-standard) distributions.
Adding generators for newly required distribution seems not to be the solution to
this problem.

In the last decade so called automatic (also called universal or black-box) meth-
ods have been developed for sampling from fairly large classes of distributions with
a single piece of code. For such algorithms a data about the distributions must be
given; typically the density function (or probability mass function), and (maybe)
the (approximate) location of the mode. Obviously these universal methods need
some setup step, in opposition to special generators, e.g., to the Box-Muller method
[2]. Nevertheless, we always can select between a fast setup step and slow marginal
generation times or (very) fast marginal generation times at the expense of a time
consuming setup step. Some of the algorithms can be adjusted by a single pa-
rameter to the needs of the current situation. Although originally motivated to
generate from non-standard distributions these universal methods have advantages
which makes their usage attractive even for standard distributions. For univariate
continuous distribution there are methods like Transformed Density Rejection [6],
or algorithms based on a variant of the ratio-of-uniforms method [9] or on piecewise
constant hat functions [1]. They have the following properties in common [see 10,
for details]:

• Only one piece of code, well implemented and debugged only once, is required.

• By a simple parameter it is possible to choose between fast setup with slow
marginal generation time and vice versa.

• It can sample from truncated distributions.

• The algorithms can be made as close to inversion as requested.

• The marginal generation time does not depend on the density function and is
faster than many of the specialized generators (even for the normal distribu-
tion).

• It can be used for variance reduction techniques.

• The quality of the generated random numbers only depends on the underlying
uniform random number generator.

For more details on these and many other universal methods see the forthcoming
monograph by Hörmann, Leydold, and Derflinger [7].

2 UNU.RAN

Universal methods are usually harder to implement since there is a setup step where
the necessary constants for the generation steps have to be precomputed. Moreover,
it might be necessary whether a particular method works with the given distribution.
Thus we have implemented many of these automatic algorithms using ANSI C in
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a library called UNU.RAN (Universal Non-uniform RANdom variate generators).
Our main goal was to get a portable, flexible and robust program, see Leydold
et al. [11]. It is implemented using an object oriented programming paradigma.
Using this library first a generator object has to be created that then can be used
to sample from the given distribution. Thus it is easy to exchanged distributions
in simulations. Moreover each generator object may have its own pseudo-random
number generator or share one with other generators.

There exist two application programming interfaces: A “traditional” API where
the generator object is created via new call and where replacement functions are
used to replace default parameters by user defined. A second interface uses a string
which describes both the desired distribution and the choosen generation method.

3 An R interface

We have proposed an R interface for this library, called Runuran. This extends the
usual functionallity in R for random variate generation in several ways. First it is
easy to sample from non-standard distributions. Secondly it is possible to choose
different methods for a particular distribution, which is not yet possible in R except
for normal distributions.

The object oriented approach of UNU.RAN is reproduced using S4 classes. This
provides nearly all features of UNU.RAN and is very simple to use. In the following
chapter we will describe the main ideas of our implementation and give examples
of how to use UNU.RAN in R.

As we can see in the following simple example it is very easy to create non
uniform random numbers for complicated distributions, e.g. the hyperbolic distri-
bution:

> hyp = new("unur","cont;pdf=\"1/sqrt(1+x^2)*exp(-2*sqrt(1+x^2)+x)\"")
> x<-sample.unur(hyp,10000)
> hist(x,breaks=50)

Besides this default string interface of UNU.RAN there is also a second interface
available with several strings. The first one describes the distribution, the second
one the method and the third one the parameters of the method.

> gen = new("unur",distr="normal();domain=(0,inf)",
method="arou", methodpars="max_sqhratio=0.9")

> x<-sample.unur(gen,10000)
> hist(x,breaks=50)

The default values are the empty strings. The default method depends on the
distribution and is documented in [12]. We define in R an special S4-class named
unur with two slots

> setClass("unur",representation(string="character",p="externalptr"),
prototype = list(string=character(), p="externalptr"))
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In the slot string we save all necessary information about the distribution, used
method etc. to generate our ’generator object’ in UNU.RAN. A full description can
be found in Leydold et al. [11]. The second slot contains an external pointer which
refers to a generator object created by the C-code.

With the definition of function initialize for our class unur we ensure that
after the creation of a new instance of the class unur we have a pointer to the
generation object created and handeled by the C-ode of UNU.RAN.

> setMethod("initialize","unur",
function(.Object,x=character())
{ ...
.Object@p <-.Call("R_unur_init",x)
.Object

}
)

The setup step of black box algorithms is hidden behind this initialization. If it
failed the user is informed by an error message. This can be happen for example if
the choosen method does not work for a special distribution.

The user does not need to know anything about the created generator object
unless that it contains all information to create the random variates very fast and
efficiently. Of course UNU.RAN allocates memory which should be deallocated in
R . R provides an ideal function named R RegisterCFinalizer which ensures that
the memory will be deallocated with the command gc().

Our first version uses only the same built in uniform RNG for all generators al-
though UNU.RAN can use multiple streams of uniform random number generators.
With the functions

> seed.unur(1234)
> reset.unur()

we can set and reset the seed.

The following examples should show some interesting features of our interface.
We can use different algorithms for a large class of distributions

> gen = new("unur",distr="beta()",method="tdr")
> x<-sample.unur(gen,10000)

or we can sample from truncated functions

> gen = new("unur",distr="normal();domain=(-1,1)")
> x<-sample.unur(gen,10000)

or we can sample from a kernel density estimate with kernel smoothing

> gen = new("unur",distr="cemp;data=(-0.1,0.05,....)",
method="empk", methodpars="smothing=0.8")

> x<-sample.unur(gen,10000) .



DSC 2003 Working Papers 5

4 Conclusion

Our interface provides the possibility to use a lot of algorithms in R to generate non
uniform variates for large classes of distributions. Due to the implementation of
S4-classes the handling is very easy. A R package with automatic installation and
documentation is in preparation. A closer relationship between R and UNU.RAN
should be possible and easy to realize. For example to define a distribution function
in R and use algorithms of UNU.RAN to generate random numbers. But this makes
only sense if we first define a distribution object in R. This is already in planning by
a group in Bayreuth [12]. A lot of contributed packages of R use random numbers
of special distributions but everybody uses his own code and variables. Therefore
we think that a standard description of distribution objects including generation of
random variates will be helpful for a lot of code developers in R.
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