
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

svlab – A Kernel Methods Package

Alexandros Karatzoglou ∗ Alex Smola † Achim Zeileis ‡

Kurt Hornik §

Abstract

svlab is an extensible, object oriented, package for kernel based learning
in R. Its main objective is to provide a tool kit consisting of basic kernel
functionality, optimizers and high level algorithms such as Support Vector
Machines and Kernel Principal Component Analysis which can be extended
by the user in a very modular way. Based on this infrastructure kernel-based
methods can be easily be constructed and developed.

1 Introduction

It is often difficult to solve problems like classification, regression and clustering—or
more generally: supervised and unsupervised learning—in the space in which the
underlying observations have been made. One way out is to project the observations
into a higher-dimensional feature space where these problems are easier to solve,
e.g., by using simple linear methods. If the methods applied in the feature space
are only based on dot or inner products the projection does not have to be carried
out explicitely but only implicitely using kernel functions. This is often referred to
as the “kernel trick”. More precisely, if a projection Φ : X → H is used the dot
product 〈Φ(x),Φ(y)〉 can be represented by a kernel function k

k(x, y) = 〈Φ(x),Φ(y)〉, (1)
∗Institut für Statistik & Wahrscheinlichkeitstheorie, Technische Universität Wien, Austria
†Australian National University, Department of Engineering and RSISE, Australia
‡Institut für Statistik & Wahrscheinlichkeitstheorie, Technische Universität Wien, Austria
§Institut für Statistik, Wirtschaftsuniversität Wien, Austria

DSC 2003 Working Papers 2

which is computationally simpler than explicitely projecting x and y into the feature
space H.
Although the kernel theory is old, in the pattern recognition and statistical learn-
ing domain it was used for the first time in Support Vector Machines (SVMs, see
Vapnik, 1998) which were applied to a wide class of problems such as classification
and regression (Bernhard Schoelkopf, 2002). Diffferent kernels represent different
transformations but since the algorithms are using the dot products to do compu-
tations one can easily change the kernel in a modular fashion in any kernel based
algorithm. Using this trick we can get non-linear variants of any algorithm that can
be expressed in terms of dot products, Support Vector Machines being the most
popular paradigm.
svlab aims at providing a modular tool kit for kernel methods with functionality
at three different levels:
Basic kernel functionality: svlab contains a rather general class concept for
the dot product (kernel) functions with some generic functionality. Frequently used
kernel functions are already implemented along with some methods for typical kernel
tasks (see Section 2). But it is very easy for users to add their own kernel function,
possibly along with further functionality.
Optimization: Many kernel methods require optimization of the kernel function
parameters, there svlab implements the interior point and sequential minimization
optimizers.
High-level kernel methods: These are algorithms such as Support Vector Ma-
chines and Kernel Principal Component Analysis (PCA), which use the underlying
kernel and optimization routines for their computations. In particular, kernel func-
tions can easily passed as arguments and hence users can either use an out-of-the-box
kernel already implemented in svlab or plug in their own kernel.

2 Kernels

As pointed out in the previous section the main advantage of kernel functions is that
they allow us to easily use (dot product based) methods in some high-dimensional
feature space, possibly of infinite dimensionality, without having to carry out the
projection into that space explicitely. However, the main disadvantage is that es-
pecially if the number of observations is large this can still be computationally ex-
pensive and burdensome, in particular when the parameters of the kernel function
(so-called hyper-parameters) still have to be optimized (tuned).
Therefore, the idea of kernels in svlab is that they are functions implementing the
kernel function k(x, y) and returning a scalar, but possibly having additional infor-
mation attached which can be used by generic functions performing typical kernel
tasks like computing the kernel matrix or the kernel expansion. Additionally, kernel-
generating functions for some frequently used classes of kernels are implemented.
For example, a Radial Basis Function (RBF) kernel with parameter σ = 0.05 could
be initialized by:

DSC 2003 Working Papers 3

R> rbf <- rbfdot(sigma = 0.05)

R> rbf

Kernel function of class "rbfkernel" with parameters:
sigma = 0.05

rbf is then the kernel function of class "rbfkernel" which inherits from "kernel".
Every object of class "kernel" has to take (at least) two arguments and return the
scalar value of their dot product k(x, y):

R> x <- 1:3

R> y <- c(1, 1.64, 3.52)

R> rbf(x, y)

[1] 0.9801987

This is all what is necessary if a user wants to plug in his own kernel: a function
of class "kernel" taking two arguments and returning a scalar. With this function
the kernel matrix Kij = k(xi, xj) can already be computed, but doing so with a
for loop in R might be computationally inefficient. Therefore, svlab has a generic
function kernelMatrix with a default method for "kernel" objects doing the for
loop but also methods for "rbfkernel" objects calling faster and memory efficient
C++ code. To make the hyper parameters accessible for these methods objects of
class "rbfkernel" (and also all other kernel classes implemented in svlab) have an
addtional attribute "par" with a list of parameters:

R> attr(rbf, "par")

$sigma
[1] 0.05

Often, it is neither advisable nor necessary to compute the full kernel matrix K
when what is really of interest is not K itself but the Kernel expansion Kα or the
quadratic kernel expression matrix with elements yiyjk(xi, xj). With the same idea
as for kernelMatrix these tasks can be carried out by generic functions kernelMult
and kenerlPol with a (probably inefficient) default method and methods for, e.g.,
"rbfkernel" objects calling more efficient C++ code performing block-wise com-
putations based on the ATLAS high performance linear algebra package.
The high level algorithms, like SVMs, implemented in svlab rely on the kernelMult,
kernelPol and kernelMatrix functions. Therefore, if a user wants to use SVMs
with his own kernel all he has to write is a "kernel" function, which is usually
very simple and should be enough to get a first impression of the performance of
the kernel. If he wants to make the computations more efficient he should provide
methods for the generic functions mentioned above which can do the computations
faster than the default method. svlab provides fast implementations of the follow-
ing dot products.

DSC 2003 Working Papers 4

• vanilladot, this function implements the simplest of all kernel functions
namely

k(x, y) = 〈x, y〉 (2)

Still it may be useful, in particular when dealing with large sparse data vectors
x, as is usually the case in text categorization.

• polydot implements both homogeneous and inhomogeneous kernels via the
following function

k(x, y) = (scale · 〈x, x′〉+ offset)degree (3)

It is mainly used for classification on images such as handwritten digits and
pictures of three dimensional objects.

• rbfdot implements Gaussian radial basis function via the following function

k(x, y) = exp(−σ · ‖x− y‖2) (4)

It is a general purpose kernel and is typically used when no further prior
knowledge is available.

• tanhdot this function implements both hyperbolic tangent kernels via the
following function

k(x, x′) = tanh (scale · 〈x, x′〉+ offset) (5)

It is mainly used as a proxy for Neural Networks but there is no guarantee
that a kernel matrix computed by this kernel will be positive definite.

3 Optimizer

In many kernel based algorithms, learning (or equivalently statistical estimation)
implies the minimization of some risk function. Typically we have to deal with
quadratic or general convex problems for Support Vector Machines of the type :

minimize f(x)
subject to ci(x) ≤ 0 for all i ∈ [n]. (6)

f and ci are convex functions and n ∈ IN .
svlab provides an optimizer of the interior point family (LOQO) (Vanderbei, 1999)
which solves the quadratic programming problem :

minimize c>x + 1
2x>Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u

(7)

This optimizer can be used in both regression and classification and novelty detec-
tion in Support Vector Machines and is know to perform fast on Support Vector
Machines optimization problems.

DSC 2003 Working Papers 5

4 Support Vector Machines and other kernel meth-
ods

Based on the basic kernel functionality from Section 2 and the optimizers from Sec-
tion 3 svlab implements Support Vector Machines for regression and classification
in the function ksvm. The types of SVMs currently supported are:

• C-Support Vector Classification

• ν-Support Vector Classification

• ε-Support Vector Regression

• ν-Support Vector Regression

• One-Class Support Vector Classification

One argument which can be specified for these are the kernels, either by

R> ksvm(y ~ x, kernel = rbfdot, kpar = list(sigma = 0.1), ...)

or by

R> ksvm(y ~ x, kernel = rbf1, ...)

Similarly, kernels can be plugged into Principal Component Analysis which is im-
plemented in the function kpca.
Both implementations are still work in progress, but the distinctive features will be
the modular way in which kernels can easily plugged in. This is also different from
the other implementation of SVMs in R—the function svm in the package e1071
(Meyer, 2001; Meyer et al., 2003), which is an interface to the C++ library libsvm
(Chang and Lin, 2001).

5 Conclusion

svlab provides a framework and basic infrastructure for the construction of kernel-
based methods in R. Its main purpose is to a rapid development toolkit which
enables the user to test existing algorithms and implement new ones in a very short
time.

References

Bernhard Schoelkopf, A. S. (2002). Learning Kernel Methods. MIT Press.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

DSC 2003 Working Papers 6

Meyer, D. (2001). Support vector machines. R News, 1(3):23–26. http://CRAN.
R-project.org/doc/Rnews/.

Meyer, D., Leisch, F., and Hornik, K. (2003). The support vector machine under
test. Neurocomputing. Forthcoming.

Vanderbei, R. (1999). Loqo : An interior point code for quadratic programming.
Optimization methods and Software, 12:251–484.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

	Introduction
	Kernels
	Optimizer
	Support Vector Machines and other kernel methods
	Conclusion

