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1 Introduction

The construction of a good classifier based on a learning sample can be seen as a
three step procedure. At first, we use the observations in the learning sample to
construct different rules. In the second step, we need to choose the best among
them. This is usually done by selecting the rule with minimum estimated misclas-
sification error. And at last, but not least, an honest estimate of the misclassifi-
cation error of the selected procedure is required, for example to decide whether
this classifier is good enough to be applied in practical situations or not. A com-
mon problem is that only a small learning sample with a large number of possible
predictors is available and all three steps have to be performed using this small
learning sample.

Two main problems arise. Firstly, we need to choose an appropriate classifier
out of a number of possible candidates, for example linear or tree based classifiers,
neural networks, nearest neighbors or support vector machines. And secondly,
we need to estimate the misclassification error of the selected procedure. It is well
known that the selection of a classification rule with minimum estimated misclas-
sification error leads to biased estimates of its performance. Nevertheless, different
rules have to be taken into account. In many applications simple rules like naive
Bayes, nearest neighbors or linear discriminant analysis (LDA) perform compara-
bly to more advanced classifiers (e.g. Friedman, 1997). However, the individual
classifiers perform well in different situations and fail under different conditions.
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One approach to solve both problems simultaneously, i.e. the method selection
and error rate estimation problem, is to apply a combination of classifiers. In-
stead of selecting one single procedure, combining the competitors may improve
classification rules. There are several approaches to the combination of different
classifiers. A linear combination of the estimated conditional class probabilities
is suggested by LeBlanc and Tibshirani (1996) and Mojirsheibani (1997), which is
related to linear combinations of regression models (Breiman, 1996c; LeBlanc and
Tibshirani, 1996). Merz (1999) uses correspondence analysis to combine the pre-
diction of different classifiers. Majority voting of the predictions of the different
classifiers is introduced by Mojirsheibani (1999).

A combination of LDA and classification trees via bagging was introduced by
Hothorn and Lausen (2003b) and generalized to the combination of arbitrary clas-
sifiers by Hothorn and Lausen (2003a). The basic idea is to add the outcome of ar-
bitrary classifiers (linear discriminant variables, predicted conditional class proba-
bilities or predicted classes), which were trained using the out-of-bag observations
only, to the set of original predictors for bagging of classification trees (Breiman,
1996a, 1998).

In this paper we will show how the bagging procedure in the ipred package
(Peters et al., 2002) can be used to combine different classifiers. Furthermore, some
preliminary results of benchmark experiments on combined predictors for regres-
sion problems are given.

2 Bundling: Combining Arbitrary Classifiers

Let Ln = {(yi , xi), i = 1, . . . , n} denote a learning sample of n independent obser-
vations consisting of p-dimensional vectors of predictors xi = (xi1, . . . , xip) ∈ Rp

and class labels yi ∈ {1, . . . , J}. A classifier C(x;Ln) predicts future y-values for
a vector of predictors x based on a learning sample Ln. We will use superscripts
to distinguish between classifiers of different origin: C1, . . . , CK, for example LDA,
nearest neighbors, logistic regression, and so on.

Drawing a random sample of size n from the empirical distribution, a bootstrap
sample of size n covers approximately 2/3 of the observations of the learning sam-
ple. The observations which are not in the bootstrap sample are called out-of-bag
sample and may be used for estimating the misclassification error or for improved
class probability estimates, see Breiman (1996a,b).

In our framework, the out-of-bag sample is used to train C1, . . . , CK. Each of
those classifiers can be used to compute a J − 1 dimensional transformation of the
observations in the bootstrap sample: the values of a linear discriminant function
or estimated conditional class probabilities.

The combination is performed as follows:

a) Draw a random sample L∗
n with replacement from Ln.

b) Train all classifiers C1, . . . , CK using the out-of-bag observations Ln \ L∗
n only.
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c) Compute the estimated conditional class probabilities (or alternatively the
values of the linear discriminant functions for LDA or predicted classes) for
all observations in the bootstrap sample L∗

n and construct a classification tree
based on all original variables as well as the estimated conditional class prob-
abilities of C1, . . . , CK.

Repeat the procedure B times and classify a new observation x by majority vot-
ing using the predictions of all B trees. Because the outcomes of C1, . . . , CK are
”bundled” by the classification trees, the procedure is called ”bundling”.

3 Implementation

Trees for nominal, continuous and censored responses are available in the R sys-
tem via the rpart package (Therneau and Atkinson, 1997). The rpart function can
easily be used for bagging classification trees: simply call rpart for bootstrap sam-
ples of the learning sample and concatenate the resulting rpart objects into a list.
The prediction of a new observation is easy, too. Predict the class of the new ob-
servation for each tree in the list and aggregate the predictions by majority voting
(for example using table).

Two main difficulties arise. For bundling, we need to compute arbitrary, user-
specified additional classifiers for each out-of-bag sample and compute their pre-
dictions both for the bootstrap sample as well as for any new observation to clas-
sify. Therefore, we need to save the additional classifiers for each bootstrap sample.
Another major problem is speed. Calling rpart 50 times, say, leads to repeated un-
necessary computations: formula evaluation, determination of the measurement
scale for each predictor and so on. Unfortunately, there is a trade-off between a
flexible implementation and speed. We therefore decided to speed up bagging
by a modification of the rpart routine and to generalize bundling at the price of
efficiency.

The implementation of the rpart routine currently does not separate the evalu-
ation of formula objects and the construction of appropriate design matrices from
the tree construction itself which leads to unnecessary computations if multiple
trees are constructed for reweighted observations in the learning sample. There-
fore, the ipred package implements a modified version called irpart which grows
multiple trees without reevaluating formula objects in order to save computing
time.

Both bagging and bundling are implemented in the generic ipredbagg which
dispatches on the class of the response: methods for factors (classification) and
numeric responses (regression) as well as responses of class Surv (censored data)
currently exists A formula based interface to ipredbagg is offered by bagging, a
generic itself which dispatches on the data argument.

bagging(formula, data, subset, na.action, ...)

Currently only a method for data frames is implemented.
As mentioned in the previous Section, the interface to bundling was designed

to allow users to specify additional classifiers in an flexible and easy way. Basically,
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for each classifier a list with two elements is required: model and predict, where
model specifies a function for training of the classifier and predict is a function
for computing predictions. We require at least two arguments for model: formula
and data. For predict, exactly two arguments are allowed: object and newdata.
If more than one additional classifier should be used, a list of lists with model and
predict elements can be defined for bundling via the comb argument.

For the experiments here, we combine the values of the linear discriminant
variables of a stabilized linear discriminant analysis, the predicted classes of near-
est neighbors (k = 5 and k = 10) and the estimated conditional class probability
derived from the logistic regression model. The associated list can be defined as
given here and passed to bagging via its comb argument (we use the Ionosphere
data as example):

R> cbundle <- list(
# stabilized LDA
list(model=slda, predict=function(object, newdata)

predict.slda(object, newdata)$x),
# 5-NN
list(model=function(...) ipredknn(..., k=5),

predict=predict.ipredknn),
# 10-NN
list(model=function(...) ipredknn(..., k=10),

predict=predict.ipredknn),
# LR or multinomial model, resp.
list(model=function(...) multinom(...,trace=FALSE),

predict=function(obj, newdata)
predict.multinom(obj, newdata, type="prob"))

)
R> library(ipred)

R> data(Ionosphere)

R> Ionosphere$V2 <- NULL

R> cmod <- bagging(Class ~ ., data = Ionosphere, comb = cbundle)

R> predict(cmod, Ionosphere[1:8, ])

[1] good bad good bad good bad good bad
Levels: bad good

For each bootstrap sample, the additional classifiers are trained and one single
function bfct for prediction is created in the environment of the current bootstrap
sample. Everytime bfct(newdata) is called, the predictions of the additional clas-
sifiers are computed in the corresponding environment (”lexical scoping”, Gentle-
man and Ihaka, 2000) and an explicit knowledge of those objects in not needed.
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sLDA 5-NN 10-NN LR Bagg Bund RF
Twonorm 2.5 3.9 3.4 5.1 6.9 2.8 4.8
Threenorm 17.4 18.4 16.9 17.9 19.6 16.6 17.8
Ringnorm 38.9 47.4 49.3 38.1 10.0 6.5 7.3
Breast Cancer 3.4 6.7 8.3 7.3 4.0 2.9 3.1
Ionosphere 13.9 15.7 16.6 12.5 7.8 6.0 6.4
Diabetes 26.9 28.6 26.5 22.4 24.3 24.2 23.7
Glass 42.4 32.7 38.1 35.2 23.0 24.2 21.3
Satellite 19.3 8.7 9.6 19.2 8.4 7.2 7.6
Shuttle 8.2 0.4 0.6 2.9 0.1 0.1 0.1
DNA 8.1 18.6 16.4 10.4 4.6 2.7 5.5

Table 1: Estimated misclassfication errors for some of the UCI benchmark prob-
lems.

4 Benchmark Experiments: Classification

In this Section we illustrate the performance of the combination of classifiers via
bundling using three artificial, four small and three larger benchmark problems.
The datasets and simulation models are assembled in the mlbench package (Leisch
and Dimitriadou, 2001).

We study bundling of three individual classifiers: stabilized linear discriminant
analysis (sLDA, see Hothorn and Lausen, 2003a), k nearest neighbors (k-NN, with
k = 5 and k = 10) as well as the logistic regression model (LR). The multinomial
model is used for problems with more than two classes. The values of the linear
discriminant functions of the stabilized LDA as well as the predicted conditional
class probabilities of nearest neighbors and the logistic regression model are com-
bined. For bagging (Bagg) and bundling (Bund), 100 unpruned trees are used. We
additionally report the error rates of random forests with 100 trees (Forest-RI, Brei-
man, 2001), R package randomForest (”RF”, Liaw and Wiener, 2002, version 3.4-4),
where the number of randomly selected predictors in each node is chosen as the
ceiling of log2(p + 1).

The misclassification error for the artificial problems is the average over 100
simulation runs, where the learning samples are of size 300 and the error rate is
computed using one single test sample of size 18000. For the larger datasets, a test
sample is selected randomly for the larger problems. The misclassification error
for the smaller problems is estimated by averaging the misclassification error of
ten independent runs of 10-fold cross-validation.

The simulated or estimated misclassification errors for the artificial and real
world benchmark datasets are given in Table 1. A graphical representation of the
simulation results for the artificial problems is shown in Figure 1.
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Figure 1: Misclassification error of 100 simulation runs for the artificial classifica-
tion problems.
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Survial-Tree Bagging Bundling Cox-Model
0.174 0.163 0.160 0.163

Table 2: Integrated Brier scores for GBSG2 data.

5 Extention on Regression Problems

The idea of combining classifiers given in Section 2 can easily be extended to re-
gression and survival problems, where the responses are real valued observations
yi ∈ R or censored: yi ∈ R× {0, 1}. In the regression context, the coefficients of a
linear model can be estimated by using the out-of-bag sample and its predictions
on the bootstrap sample can be used as an additional predictor for regression trees.
For censored responses, the linear predictor of a Cox model can be incorporated
into bagging of survival trees (Hothorn et al., 2002) by the same procedure. In con-
trast to bagging of classification trees, where the trees are grown until the nodes
are pure, it is not obvious when to stop the tree growing for bagging of regression
or survival trees.

The user interface is exactly the same as for classification problems. A com-
bination of a linear model and regression trees for the Ozone data can be trained
by

R> rbundle <- list(list(model = lm, predict = predict.lm))

R> data(airquality)

R> rmod <- bagging(Ozone ~ ., data = airquality, comb = rbundle,

+ control = rpart.control(minsplit = 2, xval = 0, cp = 0))

R> predict(rmod, airquality[1:3, ])

[1] 35.32 30.80 18.20

Using the linear predictor of a Cox model as an additional variable to a survival
tree is possible along the following lines, data from the German Breast Cancer
Study Group 2 are used as example:

R> sbundle <- list(list(model = coxph, predict = predict.coxph))

R> data(GBSG2)

R> smod <- bagging(Surv(time, cens) ~ ., data = GBSG2, comb = sbundle,

+ control = rpart.control(xval = 0))

R> predict(smod, GBSG2[1, ])

[[1]]
Call: survfit(formula = Surv(agglsample[[j]], aggcens[[j]]))

n events rmean se(rmean) median 0.95LCL 0.95UCL
2543.0 1070.0 1722.5 19.7 1814.0 1814.0 1918.0

The integrated Brier score (function sbrier, Graf et al., 1999) can be used as a
measure of goodness-of-prediction. Table 2 gives the average of ten times ten-fold
cross-validated integrated Brier scores for the GBSG2 data.
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Figure 2: Root mean squared error of 100 simulation runs for the artificial regres-
sion problems.
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6 Benchmark Experiments: Regression

For the artificial problems Friedman 1, 2 and 3, we use learning samples of size
200 and average the root mean squared errors over 100 simulation runs. For
the Ozone, Airquality and BostonHousing data, ten independent runs of ten-fold
cross-validation are used to estimate the root mean squared error. For all experi-
ments, 100 trees are grown for bagging and bundling. Each tree is grown to the
maximum size, although for some of the problems smaller trees perform better.
The results are given in Table 3 and Figure 2.

LM Bagging Bundling
Friedman 1 7.3 6.0 4.9
Friedman 2 (×103) 35.6 20.9 19.5
Friedman 3 (×10−3) 51.9 23.4 19.2
Airquality 465.2 316.1 302.4
BostonHousing 23.8 10.6 11.5
Ozone 20.0 18.5 16.6

Table 3: Estimated root mean squared error for some regression problems.

7 Summary

The bagging procedure can be used to combine arbitrary predictors in the recur-
sive partitioning framework for classification, regression and survival problems.
The interface design is rather general, however, each model needs to implement a
formula based interface.

Benchmark experiments for classification problems show that a bundle of dif-
ferent classifiers performs at least comparably to each of the competitors or even
leads to an improvement with respect to misclassification error. Although the re-
sults for combined regression models are preliminary, they indicate the gain of
model combination for regression problems.

I would like to thank Kurt Hornik for discussions and suggestions with respect
to the design of the user interface to bagging.
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