
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

The R.oo package - Object-oriented

programming with references using

standard R code

Henrik Bengtsson

Mathematical Statistics, Centre for Mathematical Sciences,
Lund University, Box 118, SE-221 00 Lund, Sweden.

hb@maths.lth.se

Abstract

When designing and implementing object-oriented applications in R, prob-
lems concerning generic functions and reference variables often occur. It is
currently not clear how to create generic functions in a robust way such that
a new package will be compatible with existing or future packages. This will
become an important problem as more and more packages are made available.
As a functional language, R does not provide methods for programming with
references as all arguments to functions are copied by value. However, there
are situations where it is useful or even necessary to pass arguments by ref-
erences. In this paper we present the package R.oo, which overcomes these
problems. In addition to a way for automatically creating generic functions
in the background and a transparent way of using references, it also provides
a foundation for designing and implementing object-oriented applications in
a robust way. In this context, we also suggest a draft of a coding convention
intended to bring additional structure to the source code. The package also
extends the current exception handling mechanism in R such that exception
objects can be caught based on their class.

Keywords: Object-oriented programming, generic functions, reference vari-
ables, coding conventions, exception handling, root class, S3, UseMethod.

1 Introduction

In R there are currently two ways for programming with classes, which are com-
monly referred to as the S3 (or S3/UseMethod) style [13] and the S4 style [7]. The

DSC 2003 Working Papers 2

S3 style has been supported by R from the very beginning and support for the S4
style was added with the release of the methods package [9], which became part of
the core distribution as of R v1.4.0 and is loaded by default from R v1.7.0. The
package presented in this paper is currently relying exclusively on the S3 program-
ming style, meaning that all classes defined using the package become S3 classes.
However, future versions are likely to migrate to the S4 programming style. Having
said this, it should be clear that the intention of the R.oo package is not to replace
S3 or S4, but to extend them with a layer such that object-oriented design and
programming in R become easier and more robust.

For beginners, but also for experts, it can be quite tedious to implement an object-
oriented design in a robust way using the standard S3 (or S4) schema. It is easy to
forget to add a generic function or, worse, to overwrite a non-generic function by a
generic function. As a developer one has to stay up to date with all generic func-
tions and all functions implemented in the latest R distribution to be sure that core
functionalities in R are not overridden or removed when one’s package is loaded.
To be certain that the package works anywhere one must stay up to date with all
other packages that the end user might load in parallel with your package. This
approach is not scalable as more and more packages are added to the CRAN.1

In R arguments are supplied to functions by a pass-by-value semantic, also known
as call-by-value. Inside the function, the arguments behave like local variables and
any change made to a value inside the function is not reflected in the original value.
The rational for this is that a function by definition takes one or several input val-
ues, returns something else and it should never modify the input values. When
passing large data objects to a function a true pass-by-value approach would be too
expensive in terms of time and memory. To overcome this, an argument in R is in
practice passed by reference as long as the variable is not modified by the function.
As soon as the function is changing the value of the argument, a local copy of it is
created to obtain pass by value. Occasionally there are requests for adding a true
pass-by-reference semantic so that functions can modify the original variable. From
now on we refer to such functions as methods and reserve the word function for
its original meaning. There are ways to emulate a pass-by-reference semantic by
letting regular R variables represent reference variables or shortly references. With
references it is possible to write more memory and time efficient code. Another
advantage is that it is possible to write more user-friendly methods where fewer
arguments need to be specified by the end user.

For reasons like these the R.oo package was developed. Its purpose is to relieve the
developer from implementation details to make it possible to focus on the object-
oriented design. The utility functions setConstructorS3() and setMethodS3()
create constructor functions and class specific methods and at the same time make
sure that required generic functions are created (or not) and throw exceptions if
illegal method names, e.g. reserved words, are used etc. Furthermore, the pack-
age provides a totally transparent way of using references by defining a new ”data
type”, namely the class Object. Any object of a class that inherits from this root
class will be passed to functions as a reference. Using a single root class, which

1The current effort of adding name spaces [12] to the R language will remove some of the
problems related to generic functions. A possible future support for multiple generic function is
like to solve the problem completely.

DSC 2003 Working Papers 3

all classes inherit from, improves the overall design and structure of any package
developed. Finally, the R.oo package also provides an extended exception handling
mechanism where an exception can be thrown and then caught depending on its
class.

The R.oo package was written using standard R code (”100% R”) and runs on all
platforms. It was designed and implemented in a object-oriented style.
This document will not discuss what object-oriented programming and design are
about. For an extensive case study on how to use the R.oo package see [3]. In
section 2, we describe how to use classes that are defined using the R.oo package
and that inherits from the root class Object. In this section some additional object-
oriented features that come with the R.oo package are also described. To further
improve the structure of an object-oriented implementation, we suggest an R Cod-
ing Convention (RCC) in section 3. The utility functions for defining constructors
and methods, which are introduced in section 4, assert that the RCC is followed.
The root class named Object will be described in detail in section 5 and the usage
of references, which is provided by the Object class, will be discussed in section 6.
Section 7 is about exception handling and section 8 explains some other utility func-
tions that is part of the package. Other classes defined in the package are briefly
mentioned in section 9. Section 10 explains how the package can be downloaded
and installed. Conclusions are given in section 11.

2 Using classes

Throughout this document we make use of a simple case study example to describe
the major parts of the package. Let the class SavingsAccount represent a bank ac-
count, which in the simplest case can be described by its balance. To secure against
illegal modifications of the balance we represent the balance with a private field
named .balance (see section 3). To obtain the balance of the account the function
getBalance() is provided. Using setBalance() it is possible to modify the account
balance directly, but it is not possible to set it to a negative balance. More com-
monly used are the methods for withdrawal and depositing, i.e. withdraw(amount)
and deposit(amount), respectively. The withdrawal method will not accept with-
drawals if the balance becomes negative. The class inherits from the root class
Object (section 5). When a SavingsAccount object is created, the balance will by
default be set to zero. A Unified Modeling Language (UML) model of the Sav-
ingsAccount class is depicted in figure 1.

2.1 Creating an object

The implementation of the class is described in section 4, but for now assume that
the usage of the constructor is SavingsAccount(balance=0) and that

account <- SavingsAccount(100)

creates a SavingsAccount object with initial balance 100. The object is referred to
by the reference variable account.

DSC 2003 Working Papers 4

Object:
SavingsAccount

.balance: double
getBalance(): double
setBalance(newBalance)
withdraw(amount)
deposit(amount)

Figure 1: UML representation of the SavingsAccount class, which extends the Ob-
ject class. Private fields has a . (period) as a prefix and ’Object:’ in the header
means that class extends the Object class.

2.2 Accessing fields

The fields of an instance of class inheriting from root class Object, shortly an Object,
can be accessed similar to how elements of a list are accessed. For example, the bal-
ance field of the account object can the be retrieved by either account$.balance or
account[[".balance"]]. To set the balance of the account either account$.balance
<- newBalance or account[[".balance"]] <- newBalance will do.

Note that there are no ways to prevent the access to private fields. However, if one
follows the RCC rule [4] that private fields and only private fields should have a
. (period) prefix, it should be clear which fields should be accessed from outside
and which should only be accessed from inside the SavingsAccount class. More
over, private fields named this way will, by default, not be listed by the functions
getFields() and ll(), which are described further in section 5, and neither by ls() [11].

2.3 Calling methods coupled with a class

Under the S3 schema a method coupled with a class is called in the same way as a
regular function, but with (the reference to) the object as the first argument. When
specifying the withdrawal and depositing methods above, we excluded the object
argument for simplicity, e.g. withdraw(amount). However, when calling the method
one has to include it, e.g. withdraw(account, amount). The method dispatching
mechanism in S3/UseMethod will then make sure that the method of the correct
class will be called. For more detailed information on how method dispatching is
done in S3 see [11].

Similar to how fields are accessed, methods that are coupled with any Object derived
class, can be accessed via the $ (or the [[) operator, e.g. account$withdraw(amount).
In many other object-oriented languages such as Java and C++, but also the
Omegahat’s OOP project [8], this is the format used for methods calls. However,
we do not recommend this style, except for static methods. Methods in R should
be though of as belonging to generic functions [7] and not to a specific class per se.

2.4 Calling static methods

A static method of a class is invoked using only the class name and it does not
require an instance of a class. All classes extending the Object class can define
static methods. The most readable way to call a method of a class is via the $ oper-

DSC 2003 Working Papers 5

ator, e.g. Object$load(file) and Exception$getLastException() even though
load(Object(), file) and getLastException(Exception()) is also possible.

2.5 Accessing virtual fields

For Object instances, there is a third way of calling methods. Methods with a name
of format get<Field >(object) or set<Field >(object, value) can be accessed
by what we denote as virtual fields, i.e. as object$<field >. For instance the
methods getBalance(account) and setBalance(account, newBalance) will be
called whenever account$balance and account$balance <- value are evaluated,
respectively.2

There are at least three real advantages of using virtual fields. First, it is possible,
as the name suggest, to make it look like a class has a certain field, whereas it
internally might use something else. For instance, a Circle class can have the two
redundant fields named radius and diameter where one is a virtual field and the
other is the actual field. Indeed, both might be declared virtual at the same time.
We find that the use of virtual fields reduces the redundancy, which in turn reduces
the risk for inconsistency. It also reduces the memory usage. Another advantage is
that it is possible to restrict what values can be assigned to a field. For instance, we
can prevent the user from setting a negative radius, e.g. circle$radius <- -20.
Finally, virtual fields can prevent direct access to private fields or modification of
constants, i.e. they provide a mechanism for encapsulation (data hiding).

2.6 Accessing class fields

A class field, also known as static fields, is a field associated with the class itself, not
with a particular instance of the class. A class field of a class is shared by all objects
of that class. A common role of a class field is that of a global variable (except from
the important difference that it is not a global variable), e.g. Colors$RED.HUE. A
class field is accessed as a regular field except that the object is now the static class
object, e.g. SavingsAccount$count <- SavingsAccount$count + 1. Any class
extending the Object class can have static fields.

3 Coding conventions

An important part of object-oriented design and implementation is to follow a stan-
dard for describing the design and for implementing it. There are several standards
for describing object-oriented design of software, but one that has become the major
standard is the Unified Modelling Language (UML) [10]. For implementation stan-
dards, also referred to as coding conventions, some languages have a well defined
specification to follow whereas others do not. Unfortunately, there is no explicit and
official coding convention for R. A well defined coding convention is useful because
it helps to make the code more structured and more readable and it reduces the
risk for mixing up field names with class names or reassign fields that are supposed

2By default, virtual fields have higher priority than regular fields, meaning that if virtual field
exists that will be accessed first although it is possible on a reference-to-reference or an object-
to-object basis to change the order which fields, virtual fields, methods and static methods are
accessed.

DSC 2003 Working Papers 6

to be constants etc. It is also fundamental for efficiently being able to share source
code between developers and over time. For this reason we are working on a R
Coding Convention (RCC) draft [4]. Next we will present an excerpt of its naming
conventions.

3.1 Naming conventions

Some of the naming convention rules of the RCC apply to object-oriented design
and programming. One of the most important is how classes, fields and meth-
ods should be named. According to RCC, names representing classes must be
nouns and written in mixed case starting with upper case, e.g. SavingsAccount.
Both field and method names must be in mixed case starting with lower case, e.g.
balance and getBalance(). Private fields should have a . (period) as a prefix, e.g.
.balance, to make it clear that it is a private field. Reserved keywords [11] and
unsafe method names must also be avoided according to the RCC. The methods
setConstructorS3() and setMethodS3(), described next, enforce these naming
rules and if not followed, an RccViolationException is thrown. Not all rules are
enforced to be backward compatible with some basic R functions that (for obvious
reasons) do not comply with the RCC. As a last resort, it is always possible to turn
of the test against RCC by using the argument enforceRCC=FALSE when using the
above functions.

4 Defining new classes

Under the S3 schema there is no way to formally define a class and there is no way
to enforce that an instance of a class has the correct format, contains the correct
fields, or to assure that the inheritance structure is valid. One reason for this is that
the class of the object and the inheritance structure of the class is solely specified
by the class attribute of the individual objects. This attribute can be modified
in any way at any time making the object-oriented implementation vulnerable to
programming mistakes, but also misuse. The S4 schema over comes some of these
lack-of-robustness drawbacks. The way the Object class is designed, the idea is that
the fields (and hence the class) are defined inside the constructor function and the
class attribute is never accessed by the programmer. This minimizes the risk for
errors.

The two utility functions setConstructorS3() and setMethodS3() introduced next
will help the programmer create constructors and methods without having to worry
about generic functions. These functions can be used for defining any classes, not
only classes derived from Object.

4.1 Defining constructors

The setConstructorS3() sets the constructor function and automatically creates any
necessary generic function (there are cases where this might be necessary). When
defining a class descending from the Object class, the constructor function also
plays the role of defining the class (its fields) and specifying which class to extend.
For example, to create the SavingsAccount class we write:

setConstructorS3("SavingsAccount", function(balance=0) {

DSC 2003 Working Papers 7

if (balance < 0)

throw("Trying to create an account with a negative balance: ", balance);

extend(Object(), "SavingsAccount",

.balance = balance

)

})

The declaration of the inheritance is done via the extend() method of the Object
class, which will be called recursively throughout all the superclasses. The first argu-
ment to extend() should be the object returned by the constructor of the superclass.
In the above example, the SavingsAccount inherits directly from the Object class,
which is done by calling its constructor. The second argument to extend() should
be the name of the class to be defined, e.g. SavingsAccount. According to the RCC,
the name of the class should be the same as the name of the constructor function.
Any other arguments to extend() are optional, but they must be named value argu-
ments, e.g. .balance=balance, which then declare the fields of the class and their
default values. Finally, all classes derived from Object must comply with the rule
that it is must be possible to create an instance of it by calling its constructor with
no argument3, e.g. account <- SavingsAccount(), cf. prototypes in S4.

4.2 Defining methods

The setMethodS3() method creates methods for S3 classes and at the same time
encapsulates a lot of details that the programmer should not have to think about.
One such thing is if a generic function should be created or not and if so, how it
should be created. For a detailed discussion on how generic functions are auto-
matically created if missing see section 4.4. To create the setBalance(newBalance)
method for the SavingsAccount class, the only thing needed is:

setMethodS3("setBalance", "SavingsAccount", function(this, newBalance) {

if (newBalance < 0)

throw("Trying to create an account with a negative balance: ", balance);

this$.balance <- newBalance;

})

The complete usage of setMethodS3() is:

setMethodS3(name, class="default", definition, private=FALSE, protected=FALSE,

static=FALSE, abstract=FALSE, trial=FALSE, deprecated=FALSE,

envir=parent.frame(), createGeneric=TRUE, enforceRCC=TRUE)

where name is the name method, class is the name of the class and definition
is the definition, i.e. the function, itself. If class == "default" (or "ANY"), a
default function [11] is created, meaning that setMethodsS3() can be used whenever
a function is defined. For all other arguments see the help page of the function.

3The reason for this is that static class objects are created by calling the constructor with no
arguments.

DSC 2003 Working Papers 8

4.3 Details

The setMethodS3() method creates a standard S3 method and at the same time
makes sure that a generic function for that method is available. For instance, the
evaluation of

setMethodS3("getBalance", "SavingsAccount", function(this) {

this$.balance;

})

will create the S3 method for the class and the S3 generic function, i.e.

getBalance.SavingsAccount <- function(this) {

this$.balance;

}

getBalance <- function(...) UseMethod("getBalance")

It also makes sure that if there already exists a non-generic function called getBalance(),
then it will be renamed to getBalance.default(). If the latter already exists there
is no way setMethodS3() can solve the conflict and therefore an Exception will be
thrown explaining this. A generic function is not created if a generic function (or
an internal function that works as such) already exists. For instance

setMethodS3("as.character", "SavingsAccount", function(this) {

paste(data.class(this), ": balance is ", this$.balance, ".", sep="");

})

will only create the S3 method and not the generic function. In addition to this,
setMethodS3() will by default assert that the (most important) RCC naming rules
are followed. If not, it throws an RccViolationException informing that an RCC
rule was violated.

4.4 Safely creating generic functions

When writing a package it is important to make sure that the package does not
overwrite preexisting functions. If a preexisting function exists that is not a generic
function, in most cases, the conflict can be solved by redefining the function to
become a default function. The test whether a function already exists or not is
commonly done manually by the programmer. However, new functions might be
added when a new version of R is released and more seriously, other packages might
be loaded before or after our package is loaded and there is no way we can know
which functions will be defined or not. A much safer approach is to check for
conflicts and solve them when the package is loaded. Furthermore, it is important
to make sure that the generic function will work with all packages and not just
the methods in our package. Complete object-oriented programming requires that
methods can have the same name for different classes, but with another set of
arguments. By not specifying the arguments of the generic functions, but only the
special ... argument, e.g. getArea <- function(...) UseMethod("getArea")
we the generic function is ”as generic as possible”4. For a further discussion how
to create generic functions safely see [5]. These problems are all taken care of
automatically by setMethodS3().

4If we do specify any arguments we restrict the corresponding methods for all classes in all
packages loaded at the same time to have the exactly the same set of arguments. Under the S4

DSC 2003 Working Papers 9

5 The root class Object

By enforcing that all classes are derived (directly or indirectly) from a common
root class, we know that there exists a set of methods that are applicable to all such
classes. This idea already exists to some extend in R, but using a common root
class it will become more explicit to the end user. The R.oo package defines the
root class Object, which has the following methods coupled to it. See also figure 2.

Object

$(name): ANY
$<-(name, value)
[[(name): ANY
[[<-(name, value)
as.character(): character
attach(private=FALSE, pos=2)
clone(): Object
detach()
equals(other): logical
extend(this, ...className, ...): Object
finalize()
getFields(private=FALSE): character[]
hashCode(): integer
ll(...): data.frame
static load(file): Object
objectSize(): integer
print()
save(file=NULL, ...)

Figure 2: UML representation of the root class Object, which all classes should be
derived from directly or indirectly through other classes. ANY is not a defined data
type, but refers to any data type or class.

The method as.character() returns a string with short information about the Ob-
ject. This is the same string that by default is displayed by print().

The print() method prints information about the Object. By default the string
returned by as.character() is printed. For convenience in R, any object of any data
type or class whose name is typed at the command line followed by ENTER, the
print() of that object will be called. Example:

> 1+2 # gives the object ’3’, which is then printed, i.e. print(3)

[1] 3

> account # same as print(account)

SavingsAccount: balance is 100.

The method getFields(private=FALSE) returns the name of all fields in the
Object. By default only names of non-private fields are returned.

The method ll(...) returns a data frame with detailed information about the fields
of the Object. By default only non-private fields are listed. For more information

style, it is required and enforced that all methods for all classes have exactly the same arguments
as the corresponding generic function. This is one of the reasons why we currently are not using
the S4 style of programming with classes, but we hope to overcome this problem soon by making
use of name spaces.

DSC 2003 Working Papers 10

see section 8.

The hashCode() method returns an integer hash code for the Object.

The objectSize() method returns the (approximate) size of the Object.

The equals(other) method compares one Object with another. If they are equal
the method returns TRUE, otherwise FALSE. If argument other is NULL, then FALSE
is always returned. The default implementation of equals() is comparing the hash-
Code() values of both objects.

The clone() method creates an identical copy of the Object5.

When an Object is deallocated from memory by the garbage collector the final-
ize() method is first called. Subclasses can override this method to make sure that
any instances of those classes clean up after themselves. For instance, objects that
allocate shared resources such as connections should make sure that these resources
are closed and deallocated upon deletion.

The methods attach(private=FALSE, pos=2) and detach() attaches and de-
taches an Object to the search path, respectively. By default only public fields
(private=FALSE) of an Object are attached and by default they are attached to
the beginning of the search path (pos=2) just after the global environment. Any
modification to such attached fields will not be reflected (saved) in the actual Ob-
ject. The attach-detach mechanism should be used solely for read-only purposes.

The method save(file=NULL, ...) saves an Object to a file (or a connection)
and the static method load(file) loads a previously saved Object and returns a
reference to it.

The somewhat special method extend(...className, ...) extends an Object into
a subclass named according to the string ...className6 and which contains all fields
as given by the ... arguments. This method is not intended to be overridden by
any subclass.

Finally, as explained in the next section, the functionality for references is hidden
inside the Object class. Hence, all subclasses will support references automatically
and the programmer does not have to think about how reference variables should
be implemented. They are always provided and they always behave in the same
way.

6 Reference variables

All instances of the Object class or one of its subclasses are accessed via references
variables or shortly references7. In standard R where reference variables are not

5Doing ref2 <- ref will only create a new reference to the same instance.
6The second argument to extend() has three dots as a prefix to make it possible to name fields

as className or similar.
7For those who are not familiar with references but with pointers, references can be thought

of as safe pointers to objects that can not by mistake be made to point to the wrong part of

DSC 2003 Working Papers 11

provided, each instance of a class is accessed by one single variable, the object
itself. With references, however, it is possible for several variables to access the
same object. Here is an example where a list contains several references to the
same Object:

person <- Person("Dalai Lama", 68)

l <- list(a=person, b=person, c=clone(person))

setAge(l$a, 67)

print(person)

[1] "Dalai Lama is 67 years old."

setAge(l$c, 69)

print(person)

[1] "Dalai Lama is 67 years old."

If person would not be a reference, the two elements a and b would be another
two copies (clones) of the Person object and a modification of one of them would
not have affected the other instance and neither the original variable person. It is
possible to create a copy of an Object by using clone() as the above code shows.

Furthermore, references make it possible to implement software that would not
otherwise be possible or would be very tedious to implement. Using references, more
details can be encapsulated and thereby the package will be more user-friendly. We
believe that a well designed object-oriented method interface based on references
can serve as a base for, but also be a good complement to, a graphical user interface.
For more complete real-world examples see [3] and [1].

6.1 Garbage collector

The use of references requires a memory management. Many languages, including
R, provide a built-in garbage collector, which removes obsolete objects from the
memory that are not referred to by anyone. Since objects inherited from the Object
class are also standard R objects they will be recognized by the garbage collector.
For example, an Object created inside a function and for which no reference is
returned, will be deleted by the R garbage collector. In summary, objects does not
have to be deleted explicitly, but for an Object to be deleted it is important that
all references to it are removed, e.g. by rm(), or set to NULL. It is a good custom to
do this as soon as an Object is not needed.

6.2 Details

R does not support references, but references can be emulated using so called en-
vironments [11]. However, using environments explicitly will quickly fill the source
code with a lot of get(name, envir=ref), assign(name, value, envir=ref)
and/or eval(..., envir=ref) statements. This makes the code hard to read and
increases the risk for errors. By encapsulating all calls to get() and assign() in the
operator methods $(), [[(), $<-() and [[<-() of the root class Object, all fields can
be accessed like if they were elements in a list. There are other ways for emulating
references and some are more and some are less memory and time efficient than

the memory. Object-oriented programming where objects are passed by references does not differ
much from the case when objects are passed by value. However, there are differences that are
important to be aware of.

DSC 2003 Working Papers 12

others. The R.oo package is using the first approach where each object lives in its
own environment. One reason is that the garbage collector recognizes environment
variables.

7 Exception handling

In addition to methods for defining classes and support for references, the package
provides an improved exception handling mechanism. The core functionalities for
exception handling is done by the Exception class (see figure 3). It provides methods
to create and throw exceptions and together with its companion trycatch() complete
exception handling is provided.

7.1 Creating and throwing exceptions

The easiest way to create and throw an exception is by calling throw(), e.g.

throw("Division by zero.")

which is equivalent to calling

throw(Exception("Division by zero."))

An object of any class that inherits from Exception contains information about
the error and when it occurred. Any Exception object can be thrown using the
throw() method and then optionally be caught by either trycatch() or try(). If
an Exception is thrown, the last exception thrown can be obtained by the static
method getLastException() of class Exception. The as.character() method for the

Object:
Exception

static getLastException(): Exception
getMessage(): character
getWhen(): POSIX time
getStackTrace(): list
printStackTrace()
showAndWait()
throw()

Figure 3: UML representation of the Exception class, which extends the Object
class.

Object class is overridden by the Exception class and the default print message of
an Exception has the format:

> throw("Division by zero.")

Error: [2002-10-20 10:24:07] Exception: Division by zero.

7.2 Catching exceptions depending on class

The trycatch() method can catch exceptions based on what class they belong to.
Like the try() function, the first argument to trycatch() is the expression to be
evaluated, which might throw an exception. Any further arguments must be named
arguments where the name specifies the Exception class to be caught and the value

DSC 2003 Working Papers 13

the code to be evaluated if such an exception is thrown. An argument with name
ANY will catch any kind of Exceptions (including try-error thrown by stop()). If
an exception is caught and no further exceptions are thrown, then trycatch() will
return safely. The following code will generate and throw an exception, which will
be caught by the ANY clause, preventing the R session from being interrupted.

trycatch({

x <- log(2);

y <- log("a");

}, ANY={

x <- 0;

y <- 0;

print(Exception$getLastException());

})

print("trycatch() did indeed catch the exception.");

More over, code defined by an argument named finally is guaranteed to be evalu-
ated immediately before trycatch() returns. This is for instance useful if a connec-
tion needs to be closed regardless of whether an exception is thrown or not.

8 Utility functions

In addition to the already mentioned methods, the package also defines some useful
utility functions, which are applicable to objects of any class or data type. The
default method of ll() lists detailed information about the objects (variables and
functions) found in an environment. The returned data frame will by default con-
tain information about the member (name of the variable or function), data.class,
dimension and object.size, which are the values returned by the functions with the
same.

> ll()

member data.class dimension object.size

1 analyze function NULL 248

2 ma MAData 1 452

3 raw RawData 1 452

4 gpr GenePixData 1 460

5 y numeric 100 828

For information about other utility functions provided by the package, see the help
of the package.

9 Other classes

Other classes that are loaded with this package are Class, Package and Rdoc. The
class Class provides an interface for querying classes about methods, fields etc.
The class Package represents any kind of package, e.g. Package("base"). Given
a Package object it is possible to query it for its classes, its author, check for
updates (see below for an example) etc. The Rdoc class provides a compiler for
Rdoc documentation, which is an extension of the Rd language that minimizes the

DSC 2003 Working Papers 14

need for having to update the documentation when the source code is updated. For
instance, the tag @synopsis generates a correct \usage (or a \synopsis) markup
given the other information in the Rdoc code. The Rdoc documentation can be
standalone files similar to Rd files (the simplest Rdoc file is a plain Rd file) or it
can be part of the source files in form of comments. The Rdoc code is compiled into
standard Rd files, which are then converted into help pages etc by R CMD build.
We intend to extend the Rdoc compiler to recognize S4 classes too.

10 Installation

Since the package was written in 100% R, no native code needs to be compiled and
the installation is straightforward. The R.oo package is part of a bundle of packages
called R.classes [6]. To download and install the R.classes bundle do

install.packages("R.classes", contriburl="http://www.maths.lth.se/help/R")

from within R. By default the R library directory is the directory named library/ in
the directory where R is installed. The bundle can be installed in a private directory
by setting the environment variable R LIBS, e.g. setenv R LIBS $HOME/R/. By
loading the package, e.g. library(R.oo), the correctness of the installation can be
verified. To install on a Macintosh that does not have OS X or to manually install
the bundle see [6]. For future updates, load the package and do

update(R.oo)

11 Conclusions

The R.oo package is open source, it is designed in an object-oriented style and im-
plemented using plain and richly commented R code (100% R). More over, it is
designed and implemented such that any future migration from S3 to S4 will be as
smooth as possible for the end user.

For over two years we have been using the R.oo package and the R.classes bundle
in a project developing a cDNA microarray analysis package (com.braju.sma [1]).
We have found that by using the R.oo package we never have had problems with
conflicts related to generic functions and we never have had to create a generic
function explicitly. In cases when we by mistake tried to use a reserved word as
method name, setMethodS3() immediately notified us. We have also found the Rdoc
compiler to be a valuable tool for maintaining the nearly 200 Rd files. Due to the
huge memory load and the large amount of redundancy in microarray data, the use
of reference variables has been a natural and successful choice. More over, since
methods can change the state of objects if references are used, we have been able to
decrease the number of arguments that has to be specified in the method calls and
therefore we can provide a cleaner and more user friendly method interface. For a
further discussion how the R.oo package has been used in the development of our
microarray package, see [2]. To install the com.braju.sma package see [1].

DSC 2003 Working Papers 15

References

[1] Henrik Bengtsson. com.braju.sma - object-oriented microarray analysis in
100% R. http://www.maths.lth.se/help/R/, 2002.

[2] Henrik Bengtsson. The com.braju.sma package - a microarray analy-
sis package based on an object-oriented design and reference variables.
http://www.maths.lth.se/help/R/, 2002.

[3] Henrik Bengtsson. Programming with references - a case study using the R.oo
package. http://www.maths.lth.se/help/R/, 2002.

[4] Henrik Bengtsson. R Coding Conventions (draft).
http://www.maths.lth.se/help/R/, 2002.

[5] Henrik Bengtsson. Safely creating S3 generic functions using setGenericS3().
http://www.maths.lth.se/help/R/, 2002.

[6] Henrik Bengtsson. The R.classes bundle (R.oo and friends).
http://www.maths.lth.se/help/R/, 2003.

[7] John M. Chambers. Programming with Data. Springer, 1998.

[8] John M. Chambers. OOP programming in the S language.
http://www.omegahat.org/, 2002.

[9] John M. Chambers. S language methods and classes.
http://www.omegahat.org/RSMethods/, 2002.

[10] Object Management Group. UML Resource Page. http://www.omg.org/uml/,
2002.

[11] R Development Core Team. R Language Definition (v1.7.0, draft).
http://www.r-project.org/, April 2003.

[12] R Development Core Team. Writing R Extensions (v1.7.0). http://www.r-
project.org/, April 2003.

[13] W.N. Venables and B.D. Ripley. Modern Applied Statistics with S-PLUS.
Springer, 3rd edition, 1999.

	Introduction
	Using classes
	Creating an object
	Accessing fields
	Calling methods coupled with a class
	Calling static methods
	Accessing virtual fields
	Accessing class fields

	Coding conventions
	Naming conventions

	Defining new classes
	Defining constructors
	Defining methods
	Details
	Safely creating generic functions

	The root class Object
	Reference variables
	Garbage collector
	Details

	Exception handling
	Creating and throwing exceptions
	Catching exceptions depending on class

	Utility functions
	Other classes
	Installation
	Conclusions

