
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

A Framework for an R to OpenGL

Interface for Interactive 3D graphics

Daniel Adler and Oleg Nenadić ∗

Abstract

We describe a framework for providing interactive 3D graphics in R. The
key component is the interface between R and OpenGL, which provides a set of
commands for specifying objects and operations that enable three-dimensional
graphical visualization. An alpha version of the software, the core of which is
written in ANSI-compliant C++, is available for testing and feedback (Win32
and X11).

An important goal in the design has been to facilitate portability to dif-
ferent operating systems. An object-oriented approach is used throughout. A
simple and intuitive user interface for navigating in 3D using a pointer de-
vice is provided by moving the viewer around the surface of a sphere that
surrounds the relevant space; the view is focussed on the centre of the sphere.

The focus of the current implementation is to manipulate 3D “primitives”
(for example points, lines, triangles, quads, spheres, text, etc.) which consti-
tute the building blocks for more complex 3D objects (such as histograms, per-
spective plots, scatterplot, axes, etc. ). A number of attractive OpenGL fea-
tures, such as multiple lighting, fog, texture-mapping, alpha-blending (trans-
parency) and side-dependent rendering are accessible directly from R via func-
tions that control shapes and appearance. Further functions control device-
and-scene management (opening closing windows, clearing selected objects),
environment setup (setting lights, bounding boxes, viewpoints) and export
(making and exporting snapshots). The calling sequences are similar to those
used in the existing and familiar R graphics functions, such as persp.

∗Institut für Statistik und Ökonometrie, University of Göttingen



DSC 2003 Working Papers 2

1 Introduction

RGL1 is an add-on library that extends the R system[2] with a 3D visualization
device system with interactive viewpoint navigation. It is implemented in C++
using OpenGL[4] as the realtime rendering backend.

A major goal of the project was to develop an appropriate abstraction to the
underlying operating system services (such as the windowing system and OpenGL),
so that porting to major R platforms with slightly different base services is possible.
The software can be delivered as an add-on package with no modification to the
original R source tree.

The RGL device system runs as an autonomous subsystem in the R run-time
process as the R device interface has been designed for plotting devices and lacks
interface requirements for 3D visualization.

The render engine and supported data objects are optimized for large dataset
geometry and appearance visualization using several speed-up techniques such as
display lists, fake visualization tricks and eye-candy special effects.

The library has been ported to the Win32 and X11 platforms so far, with support
for MinGW, GCC and Visual C++ (win32 only) compiler systems.

2 Visualization Model

Background

Viewpoint

Lights

Shape

Bounding Box

Figure 1: A typical scene

The visualization model uses five base object types, that describe a complete
1Accidently, our project name collides with an R package written by Duncan Murdoch[3].

Allthough both projects deal with the same problem, our approach differs substantially in the
architectual part with the most evident difference beeing the cross-platform portability.



DSC 2003 Working Papers 3

scene (see figure 1).

• Shapes are basic geometry informations and constitute basic building blocks.
Currently eight basic shape types are supported: Points, lines, triangles,
quadrangles, texts, spheres, surface and 3d sprites (screen-aligned quadran-
gles). Several attractive appearance properties can be applied to the geometry
such as solid colouring, lighting material, texture-mapping, alpha blending,
gouraud shading and side-dependant fill mode.

• The Viewpoint surrounds the overall geometry is focused on the center. In-
teractive navigation is provided using the pointing device which controls the
viewing direction (using polar coordinates), zoom and field-of-view.

• Directional Light sources define the lighting conditions.

• The Bounding Box tracks the range of the geometry and optionally displays
axis labeling.

• The Background provides either solid colour or an environmental sphere en-
closing the scene.

3 Programming Interface

The RGL API comprises 21 R commands. Care has been taken to be semantically
compatible with the R plotting facilities where appropriate.

• Device Management Functions provide support for multiple devices. Devices
are automatically opened, in case one is required and none is already opened.

• Scene Management Functions provide support for undo operations.

• Shape Functions consitute the basic building blocks that can be combined to
build complex visualization scenarios.

• Environment Setup Functions provide control to background and bounding
box decorations, axis labeling, lighting conditions and viewpoint.

• Export Functions allow for making still picture exports.

• One Apperance Function is used internally by API functions to setup appear-
ance properties in a generic way.

Most functions call a counter-part C++ function in the shared library. A de-
tailed overview of the API is appended at the end of this paper.

4 Architecture

To allow a seamless integration into the R system, the software design requires a high
degree of abstraction, so further to achieve the overall design goal of cross platform
portability. Due to the fact that R lacks a portable interface to the windowing
system and OpenGL, our architecture provides these services.



DSC 2003 Working Papers 4

4.1 Modules

api

scene

device

devicemanager rglview

client device

foundation layer

x11 port

win32 port

lib gui types math pixmap

libpng

win32guiwin32lib

x11lib x11gui

Figure 2: Architecture

Figure 2 gives a brief overview of the software modules involved in the archi-
tecture. The foundation layer represents the platform abstraction which consists of
five core services.

4.2 Foundation Layer

The lib module provides library initialization and destruction entry-points where
a platform specific integration strategy into the R system is implemented. The
gui module provides a portable object-oriented framework of components to build
graphical user-interfaces with support for OpenGL contexts and fonts. Back-end
modules represent the peers to the actual windowing system. Matrix/Vector arith-
metic classes with support for homogenous transformations, a common technique
in realtime rendering, are implemented in the math module. Common fundamental
datatypes and structures can be found in the types module. Datatype abstraction
for pixmap import and export is provided in the pixmap module. A png pixmap
datatype handler is currently implemented.

4.3 Device system

The client infrastructure and device is implemented on top of this layer.



DSC 2003 Working Papers 5

The api and device manager module constitute the client, while the device pro-
vides the interface and composes the device semantics using the graphical user-
interface component implemented in rglview. The core 3D engine is implemented
in the scene module.

4.4 Data model

Shape Stack

Shape

Shape

...

Shape

Light Stack

...

Light

Light

Background

Viewpoint

Bounding Box

Slots

Figure 3: logical data model

The scene description is stored in a composite object model, which gets evaluated
by the render engine at a highly frequent rate. Figure 3 shows a logical data model.
Multiple shapes and lights are managed simulatenously, using a stack semantic.
Three additional object slots are managed which hold one object at a time. Slot
objects are replaced, while stack objects can be popped or optionally cleared at
once.

4.5 Minimalistic GUI toolkit

The GUI abstraction model has been designed using software patterns. Software
patterns support decision making in software design and might prevent from com-
mon pitfalls. The abstraction model can be characterized by two common patterns,
namely the Bridge and the Factory pattern taken from [1] (see figure 4). We sepa-
rate the windowing system abstraction and implementation using two class hierar-
chies. The abstraction hierarchy represents the base for user-interface component
development. The implementation interface hierarchy provides core base services
required to get the user-interface working (e.g. a specific windowing resource and
further specializations). A concrete factory object encapsulates concrete implemen-
tation instances of that platform, so that the abstraction uses the factory interface
to initiate an implementation object. Both hierarchies are bridged, so that win-
dowing events are injected into the abstract objects and core service requests (e.g.
drawing) are provided by implementation objects. The bridge gets built by pass-
ing an abstract factory interface at early startup to the abstract gui classes which
constructs their implementation counter-part at run-time.



DSC 2003 Working Papers 6

View

Window

Bin

WindowImpl

Win32FactoryX11Factory

Frame FrameImplButton

RGLViewCrossPan

abstract hierarchy implementation hierarchy

Bridge

Factory

createFrameImpl()

createWindowImpl()

implements:

X11FrameImpl and

X11WindowImpl

Figure 4: gui abstraction model

Platform ports provide their own factory interface implementation (e.g. X11Factory)
which create concrete implementation objects(e.g. X11WindowImpl) providing im-
plementation interfaces (e.g. WindowImpl).

Software built on that architecture deals with abstract gui classes, which them-
self use abstract interface classes such as Factory and WindowImpl.

4.6 Render engine

The render engine and data model has been implemented using a class hierarchy
depict in figure 5. Rendering is performed using polymorphisms. Appearance in-
formation is implemented in the Material class which is aggregated by the Shape
and BBoxDeco classes. A central class, named Scene class manages the data model
and implements the overall rendering strategy.

5 Conclusion

The RGL library has been ported to the X11 and Win32 platform so far. The
presented architecture and software design provides a good starting point for further
development. As this project is in early stage, many improvements are planned and
will be outlined briefly.

The core rendering engine requires several improvements. Transparent materials
are not handled correctly due to the fact, that we render faces in no order using
the depth buffer (provided by the OpenGL interface). A correct display would
require the faces to be sorted and rendered in distance order. A hybrid rendering
architecture with support for DirectX (win32 only) and a C++ template-based



DSC 2003 Working Papers 7

SceneNode

Shape BBoxDecoLightViewpoint

Background PrimitiveSet SphereSet SurfaceTextSet

FaceSet LineSetPointSet

QuadSet TriangleSet

Figure 5: Class Hierarchy

software shader is in discussion.
The portable GUI abstraction is in a rudimentary state, providing the essentials

for opening a Window, creating an OpenGL context and dispatching events. We
plan to implement a tiled view navigation interface with four separate views (using
front, side, top and perspective projection).

Support for dynamic graphics and animation is planned. The 3D web standard
VRML97 and its successor X3D are very promising for an open and extendable
browser-based rendering architecture.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesley, United
States of America, 1994.

[2] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[3] Duncan Murdoch. RGL: An R Interface to OpenGL. DSC 2001, Vienna, 2001.

[4] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Program-
ming Guide. Addison-Wesley, United States of America, 1999.



DSC 2003 Working Papers 8

function description
Device management:
rgl.open() Opens a new device.
rgl.close() Closes the current device.
rgl.cur() Returns the number of the active device.
rgl.set(which) Sets a device as active.
rgl.quit() Shuts down the subsystem and detaches RGL.
Scene management:
rgl.clear(type="shapes") Clears the scene from the stack of specified type

(“shapes” or “lights”).
rgl.pop(type="shapes") Removes the last added node from stack.
Export functions:
rgl.snapshot(file) Saves a screenshot of the current scene in PNG–

format.
Shape functions:
rgl.points(x,y,z,...) Add points at (x, y, z).
rgl.lines(x,y,z,...) Add lines with nodes (xi, yi, zi), i = 1, 2.
rgl.triangles(x,y,z,...) Add triangles with nodes (xi, yi, zi), i = 1, 2, 3.
rgl.quads(x,y,z,...) Add quads with nodes (xi, yi, zi), i = 1, 2, 3, 4.
rgl.spheres(x,y,z,r,...) Add spheres with center (x, y, z) and radius r.
rgl.texts(x,y,z,text,...) Add texts at (x, y, z).
rgl.sprites(x,y,z,r,...) Add 3D sprites at (x, y, z) and half-size r.
rgl.surface(x,y,z,...) Add surface defined by two grid mark vectors x

and y and a surface height matrix z.
Environment setup:
rgl.viewpoint(theta,phi,
fov,zoom,interactive)

Sets the viewpoint (theta, phi) in polar coordi-
nates with a field–of–view angle fov and a zoom
factor zoom. The logical flag interactive speci-
fies whether or not navigation is allowed.

rgl.light(theta,phi,...) Adds a light source to the scene.
rgl.bg(...) Sets the background.
rgl.bbox(...) Sets the bounding box.
Appearance functions:
rgl.material(...) Generalized interface for appearance parameters

(cf. Section 2.3).

Table 1: The 21 RGL functions which constitute the API, grouped by category. The
usual graphics parameters are permitted as arguments to functions which have ”...”
in their calling sequence. (For details see par() in the R base library.)


	Introduction
	Visualization Model
	Programming Interface
	Architecture
	Modules
	Foundation Layer
	Device system
	Data model
	Minimalistic GUI toolkit
	Render engine

	Conclusion

